Targeting Success: A Business Case Analysis
of 100k Orders at Target in Brazil
by Emma Luk

1. Import the dataset and do usual exploratory analysis steps like checking
the structure & characteristics of the dataset
1. Understanding the data

Based on the given datasets, it can identify the following relationships between them:

1. Customers and Orders:
= The "customers.csv" file contains information about customers, including their unique IDs,
zip codes, cities, and states.
= The "orders.csv" file contains information about orders, including the order IDs, customer
IDs, order status, purchase timestamps, delivery dates, and estimated delivery dates.
= The relationship between these two datasets is established through the "customer_id"
column in the "orders.csv" file, which references the unique IDs of customers in the
"customers.csv" file.
2. Sellers and Orders:
= The "sellers.csv" file contains information about sellers, including their unique IDs, zip
codes, cities, and states.
= The "order_items.csv" file contains information about order items, including the order
IDs, order item IDs, product IDs, seller IDs, shipping limit dates, prices, and freight values.
= The relationship between these two datasets is established through the "seller_id"
column in the "order_items.csv" file, which references the unique IDs of sellers in the
"sellers.csv" file.
3. Payments and Orders:
= The "payments.csv" file contains information about payments, including the order IDs,
payment sequential numbers, payment types, payment instalments, and payment values.
= The "orders.csv" file also contains information about orders, including the order IDs,
customer IDs, order status, purchase timestamps, delivery dates, and estimated delivery
dates.
= The relationship between these two datasets is established through the "order_id"
column, which is common in both the "payments.csv" and "orders.csv" files.
4. Reviews and Orders:
= The "order_reviews.csv" file contains information about reviews, including the review IDs,
order IDs, review scores, review comment titles, review creation timestamps, and review

answer timestamps.
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The "orders.csv" file also contains information about orders, including the order IDs,
customer IDs, order status, purchase timestamps, delivery dates, and estimated delivery
dates.

The relationship between these two datasets is established through the "order_id"
column, which is common in both the "order_reviews.csv" and "orders.csv" files.

5. Products and Order Items:

The "products.csv" file contains information about products, including the product IDs,
product category names, product name lengths, product description lengths, product
photos quantities, product weight in grams, product length in centimetres, product height
in centimetres, and product width in centimetres.

The "order_items.csv" file contains information about order items, including the order IDs,
order item IDs, product IDs, seller IDs, shipping limit dates, prices, and freight values.

The relationship between these two datasets is established through the "product_id"
column in the "order_items.csv" file, which references the unique IDs of products in the

"products.csv" file.

6. Geolocation and Customers/Sellers:

The "geolocation.csv" file contains information about geolocations, including the zip code
prefixes, latitudes, longitudes, cities, and states.

The "customers.csv" file contains information about customers, including their unique IDs,
zip codes, cities, and states.

The "sellers.csv" file contains information about sellers, including their unique IDs, zip
codes, cities, and states.

The relationship between the "geolocation.csv" file and the "customers.csv" and
"sellers.csv" files is established through the zip code prefixes, which are common in all
three files and can be used to join or merge the datasets based on the location

information.

Based on these relationships, data analysts at Target could perform various analyses, such as

customer segmentation (Section 7.1 Analysing Customer Sentiment with Natural language) based

on customer reviews and review scores.

1.1Data type of columns in tables

(Section 7.1 Analysing Customer Sentiment with Natural language), very often it is easier to perform
analysis using SQL or BigQuery on data we have right in the tables and then move forward to ML/Al/Data

science and engineering in Python.

Python codes:

(Figure 1 Python codes) The “df.shape” function returns the shape of the “dataframe”, “df.dtypes”
function returns the data types of each column in the dataframe, and “df.describe()” function returns

the descriptive statistics of the numerical columns in the dataframe.
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import pandas as pd

import numpy as np

import matplotlib.pylab as plt
import seaborn as sns
plt.style.use('ggplot"')

# Display the shape of the dataframe
df.shape

# Display the data types of each column in the dataframe
df.dtypes

# Display descriptive statistics of the numerical columns in the dataframe
df.describe()

Figure 1 Python codes

(Figure 1.1 Analyse Data Types of Columns for different tables with Common Table Expression (CTE)),
data_type: This is likely meant to display the data types of the columns in the table, which would give
information about the type of data stored in each column (e.g., integer, float, string).

Analyse Data Types of Columns

To analyse the data types of columns in a table, use the following query in BigQuery:

-- Data type of columns in tables

-- Analyse Data Types of Columns for different tables

-- with Common Table Expression (CTE)

WITH customer_columns AS (

SELECT column_name, data_type

FROM “target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'customers'

),

seller_columns AS (

SELECT column_name, data_type

FROM “target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'sellers'

),

order_items_columns AS (

SELECT column_name, data_type

FROM target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'order_items'

),

geolocations_columns AS (

SELECT column_name, data_type

FROM “target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'geolocations'

),

payments_columns AS (

SELECT column_name, data_type

FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'payments'

),

orders_columns AS (

SELECT column_name, data_type

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'orders'

),

reviews_columns AS (

SELECT column_name, data_type

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'order_reviews'
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),

products_columns AS (
SELECT column_name, data_type

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name =

)

"products’

-- Analyse Data Types of Columns for different tables with Common Table Expression (CTE)

SELECT column_name,

data_type

UNION ALL

SELECT column_name,

data_type

UNION ALL

SELECT column_name,

data_type

UNION ALL

SELECT column_name,

data_type

UNION ALL

SELECT column_name,

data_type

UNION ALL

SELECT column_name,

data_type

UNION ALL

SELECT column_name,

data_type

UNION ALL

SELECT column_name,

data_type

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

customer_columns

seller_columns

order_items_columns

geolocations_columns

payments_columns
orders_columns

reviews_columns

products_columns;

Figure 1.1 Analyse Data Types of Columns for different tables with Common Table Expression (CTE)

Query results in the following:

Row
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column_name 4
product_id
product_category
product_name_length
product_description_length
product_photos_gty
product_weight_g
product_length_cm
product_height_cm
product_width_cm
review_id

order_id

review_score
review_comment_title
review_creation_date
review_answer_timestamp
order_id

customer_id

order_status

Figure 1.2 Query results

data_type

STRING
STRING
INT64
INT64
INT64
INT64
INT64
INT64
INT64
STRING
STRING
INT64
STRING

TIMESTAMP

TIMESTAMP

STRING
STRING
STRING

19

20
21
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24
25
26
27
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32
33
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37
38
39
40
4

42
43
a4

order_purchase_timestamp
order_approved_at

order_delivered_carrier_date

order_delivered_customer_date

order_estimated_delivery_date

order_id
payment_sequential
payment_type
payment_installments
payment_value
order_id
order_item_id
product_id

seller_id
shipping_limit_date
price

freight_value

seller_id
seller_zip_code_prefix
seller_city
seller_state
customer_id
customer_unique_id
customer_zip_code_prefix
customer_city

customer_state

TIMESTAMP
TIMESTAMP
TIMESTAMP
TIMESTAMP
TIMESTAMP
STRING
INT64
STRING
INT64
FLOAT64
STRING
INT64
STRING
STRING
TIMESTAMP
FLOAT64
FLOAT64
STRING
INT64
STRING
STRING
STRING
STRING
INT64
STRING
STRING
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1.2 Data shape of rows and columns in tables

shape: This is likely meant to display the shape of a table, which would be the number of rows and
columns in the table.

(Figure 1.3 BigQuery: shape) The code provided is a series of SQL queries written in BigQuery (a cloud-
based data warehousing and analytics platform by Google) that are used to determine the shape (i.e.,
number of columns and rows) of various tables in a dataset named target_business in a BigQuery project
named target-business-case-382621.

The tables being queried are:

= customers: Provides information about customers.

= sellers: Provides information about sellers.

= order_items: Provides information about order items.

= geolocation: Provides information about geolocations.

= payments: Provides information about payments.

= orders: Provides information about orders.

= order_reviews: Provides information about order reviews.
= products: Provides information about products.

(Figure 1.3 BigQuery: shape) Each query uses a Common Table Expression (CTE) to calculate the number
of distinct columns (num_columns) in each table using the COUNT(DISTINCT column_name) function,
and the total number of rows (num_rows) in each table using a subquery with COUNT(*). The final
output of each query is a result set with two columns: num_columns and num_rows, which represent
the shape of the respective table in terms of columns and rows.

-- -- Data shape tables in tables
-- Analyse shape tables for different tables
-- with Common Table Expression (CTE)

-- BigQuery shape table for customers table
WITH customer_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM “target-business-case-
382621.target_business.customers’) AS num_rows
FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'customers'
)
SELECT num_columns, num_rows
FROM customer_shape;

-- BigQuery shape table for sellers table
WITH seller_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM “target-business-case-
382621.target_business.sellers”) AS num_rows
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'sellers'

)
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SELECT num_columns, num_rows
FROM seller_shape;

-- BigQuery shape table for order_items table
WITH order_items_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.order_items’ ) AS num_rows
FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'order_items'
)
SELECT num_columns, num_rows
FROM order_items_shape;

-- BigQuery shape table for geolocations table
WITH geolocations_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.geolocation’) AS num_rows
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'geolocation'
)
SELECT num_columns, num_rows
FROM geolocations_shape;

-- BigQuery shape table for payments table
WITH payments_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.payments”™) AS num_rows
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'payments'
)
SELECT num_columns, num_rows
FROM payments_shape;

-- BigQuery shape table for orders table

WITH orders_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,

(SELECT COUNT(*) FROM “target-business-case-382621.target_business.orders

FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'orders'

)

SELECT num_columns, num_rows

FROM orders_shape;

-- BigQuery shape table for reviews table
WITH reviews_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.order_reviews ) AS num_rows
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'order_reviews'
)
SELECT num_columns, num_rows
FROM reviews_shape;

-- BigQuery shape table for products table
WITH products_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,

*) AS num_rows
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(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.products’) AS num_rows
FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®

WHERE table_name =
)

SELECT num_columns,
FROM products_shape;

Figure 1.3 BigQuery: shape

"products’

num_rows

Query Results:

the shape (i.e., number of columns
and rows) for customers table:

Row fo_ fi_
y i %

1 5 99441

the shape (i.e., number of
columns and rows) for sellers
table:

Row num_columns/ num_rows

3 3

1 4 3095

-

the shape (i.e., number of
columns and rows) for
order_items:

num_columns num_rows

- 3 7

1 7 112650

Row

the shape (i.e., number of columns
and rows) for geolocations table:

num_columns NUM_rows

< ? (

1 5 1000163

Row

the shape (i.e., number of
columns and rows) for
payments table:

Row num_columns _ num_rows
“ %

1 5 103886

the shape (i.e., number of
columns and rows) for orders
table:

Row num_columns 4 num_rows
v

7

1 8 99441

the shape (i.e., number of columns
and rows) for reviews table:

num_columns NUM_rows

r r r

1 6 99224

Row

the shape (i.e., number of
columns and rows) for
products table:

Row num_columns P NUM_rows
3

1 g 32951

#%

Here is the interpretation of the output:

= customers.csv: The table has 5 columns and 99441 rows.

= sellers.csv: The table has 4 columns and 3095 rows.

= order_items.csv: The table has 7 columns and 112650 rows.

= geolocations.csv: The table has 5 columns and 1000163 rows.

= payments.csv: The table has 5 columns and 103886 rows.

=  orders.csv: The table has 8 columns and 99441 rows.

=  reviews.csv: The table has 6 columns and 99224 rows.

= products.csv: The table has 9 columns and 32951 rows.

1.2 Time period for which the data is given

(Figure 1.4 BigQuery: Time period for which the data is given), here's the BigQuery that uses Common

Table Expressions (CTEs) to find out the time period for which the data is given in the Target dataset:

-- 1.2. Time period for which the data is given

WITH min_max_dates AS (
SELECT
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MIN(order_purchase_timestamp) AS min_date,

MAX(order_purchase_timestamp) AS max_date
FROM

target_business.orders

)
SELECT

FORMAT_TIMESTAMP('%Y-%m-%d', min_date) AS min_purchase_date,

FORMAT_TIMESTAMP('%Y-%m-%d', max_date) AS max_purchase_date
FROM

min_max_dates;

Figure 1.4 BigQuery: Time period for which the data is given

(Figure 1.4 BigQuery: Time period for which the data is given), in this query, first define a Common Table
Expression (CTE) called min_max_dates which calculates the minimum and maximum purchase
timestamps from the orders table using the MIN() and MAX() functions. Then, in the main query, use the
FORMAT_TIMESTAMP() function to format the minimum and maximum purchase timestamps as dates in
the 'YYYY-MM-DD' format, and alias them as min_purchase_date and max_purchase_date, respectively.

This query will return the minimum and maximum purchase dates from the orders table, which represent
the time period for which the data is given in the Target dataset.

Query Results:

-- min_purchase_date: 2016-09-04
-- max_purchase_date: 2018-10-17

Row min_purchase_date max_purchase_date
& % %

1 2016-09-04 20181017

1.3 Cities and States of customers ordered during the given period

(Figure 1.5 BigQuery: Cities and States of customers ordered during the given period using Common
Table Expression (CTE)), in this query, a Common Table Expression (CTE) named orders_cte is used to
retrieve the distinct customer_city and customer_state from the orders table, customers table, and
geolocation table. The ON clause specifies the join conditions between the tables. The WHERE clause
filters the orders based on the given period using the order_purchase_timestamp column.

Finally, the main query selects the customer_city and customer_state columns from the CTE and orders
the results by customer_state and customer_city.

- Cities and States of customers ordered during the given period using Common Table Expression (
CTE)

WITH orders_cte AS (

SELECT DISTINCT customer_city, customer_state

FROM target_business.orders o

JOIN target_business.customers ¢ ON o.customer_id = c.customer_id

JOIN target_business.geolocation g ON c.customer_zip_code_prefix = g.geolocation_zip_code_pref
ix

WHERE o.order_purchase_timestamp BETWEEN '2016-09-04 21:15:19 UTC' AND '2018-10-
17 17:30:18 UTC'
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)

SELECT customer_city, customer_state
FROM orders_cte
ORDER BY customer_state, customer_city;

Figure 1.5 BigQuery: Cities and States of customers ordered during the given period using Common Table
Expression (CTE)

Query Results:

DISTINCT Cities and States of customers ordered during the given period: 4259

Row 4 customer_city 4 customer_state 4 18 cacimbinhas AL 4243 palmas TO
1 brasileia AC 19  cajueiro AL 4244 paraiso do tocantins TO
2 cruzeiro do sul AC 20 campo alegre AL 4245 parana TO
3 epitaciolandia AC o canapi AL 4246 pedro afonso TO
4 manoel urbano AC 29 coite do noia AL 4247 peixe TO
5  portoacre AC 23 colonia leopoldina AL 4248 pequizeiro TO
6 rio branco AC 24 coruripe AL 4249 pindorama do tocantins TO
7 senador guiomard AC 25  delmiro gouveia AL 4250 pium TO
8  xapuri AC 26  dois riachos AL 4251  porto nacional TO
9 | aguabranca AL 27  felizdeserto AL 4252 praia norte T

L0 anadia AL 28  girau do poncianc AL 4253 pugmil To
11 arapiraca AL 20 ibateguara AL 4254  sandolandia TO
12 atalaia AL 30 igaci AL 4255  silvanopolis TO
13 barra de santo antonio AL 31 igrejanova AL 4256 sitio novo do tocantins TO
14 barra de sao miguel AL - inhapi AL 4257 taguatinga TO
:IIZ E:t:::a 2t & jequia da praia AL 4258 lc)can‘tmopolis TO
17 boca da mata AL 3 junueiro A o e "

Figure 1.6 DISTINCT Cities and States of customers ordered during the given period: 4259
2. In-depth Exploration:

2.1 Is there a growing trend on e-commerce in Brazil? How can we describe a
complete scenario? Can we see some seasonality with peaks at specific
months?

(Figure 2.1 Breaking Down Brazil's E-commerce Boom: Seasonal Peaks and Complete Trends), based on
the data, it can see a clear growing trend in e-commerce in Brazil. The number of orders and revenue have
steadily increased throughout the year, with a notable increase in the number of orders from May to
August, and then a slight decrease in September to December.

The data shows that there were 3,318 orders and 65,731,702.59 BRL revenue in January, while in
December, there were 2,336 orders and 45,203,634.93 BRL revenue.

Overall, the data suggests that e-commerce in Brazil is on the rise, and that there are specific months
where it can see a peak in orders and revenue. However, to fully describe a complete scenario, it would
need to analyse more data, such as the types of products being sold, the demographics of the buyers, and
any external factors that may be contributing to the growth in e-commerce.
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-- Breaking Down Brazil's E-commerce Boom: Seasonal Peaks and Complete Trends

SELECT

EXTRACT(MONTH FROM order_purchase_timestamp) AS month,
COUNT(DISTINCT o.order_id) AS num_orders,
SUM(oi.price + oi.freight_value) AS revenue

FROM

‘target-business-case-382621.target_business.orders’ o
JOIN “target-business-case-382621.target_business.order_items” oi ON o.order_id = oi.order_id

JOIN “target-business-case-382621.target_business.customers’ ¢ ON o.customer_id = c.customer_id

JOIN “target-business-case-382621.target_business.geolocation” g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix

WHERE

g.geolocation_state = 'SP’

GROUP BY

month

ORDER BY
month ASC;

Figure 2 BigQuery: Breaking Down Brazil's E-commerce Boom: Seasonal Peaks and Complete Trends

Breaking Down Brazil's E-commerce Boom:
Seasonal Peaks and Complete Trends

month num_orders -
August 4925
May 4,599
July 4348
June 4,084
March 4,021
April 3,954
January 3318
February 3316
MNovember 2,970
December 2,336
October 1,873
1-12/712 >

)
=

num_orders

[
=

B num_orders

July March January November
June April February December
month
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Row month num_orders revenue
y “ ~

1 , 1 , 3318 , 65731702.590026051 ’
2 2 3316 61213836.660112239
3 3 4021 79450728.95999977
4 4 3954 80181072.180037409
5] 5 4599 93371200.6900955
6 6 4084 80896654.340031
7 7 4348 81204575.000060216
8 8 4925 94572319.63001591
9 9 1616 33014337.460006792
10 10 1873 37555774.219999827
11 11 2970 58017476.310051054
12 12 2336 45203634.930022441

Figure 2.1 Breaking Down Brazil's E-commerce Boom: Seasonal Peaks and Complete Trends

2.2 What time do Brazilian customers tend to buy (Dawn, Morning,
Afternoon or Night)?

= (Figure 2.2 BigQuery: Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night), in
this query, it join the orders and customers tables on the customer_id column to get the
order_purchase_timestamp column and the customer_state column in the same result set. It filter
the results to only include orders from the Sao Paulo state, which is where Target operates in
Brazil.

= |t then extract the hour of the day from the order_purchase_timestamp column using the
EXTRACT function, and group the results by the purchase hour. Finally, it count the number of
orders in each hour and sort the results by the purchase hour in ascending order.

= This query will return a table with two columns: purchase_hour and total_orders. The
purchase_hour column will contain the hour of the day (in 24-hour format) when the orders were
made, and the total_orders column will contain the number of orders made in that hour. (Figure
2.3 Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)), it can interpret the
results to find out what time Brazilian customers tend to buy more: early morning, morning,
afternoon or night.

SELECT

EXTRACT(HOUR FROM order_purchase_timestamp) AS purchase_hour,

COUNT(*) AS total_orders
FROM

‘target-business-case-382621.target_business.orders” AS o

JOIN “target-business-case-382621.target_business.customers’ AS ¢ ON o.customer_id = c.customer_id
WHERE
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c.customer_state = 'SP

GROUP BY

purchase_hour

ORDER BY

purchase_hour

Figure 2.2 BigQuery: Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)

Query results:

Row

(L= = B B« & I N

FE RO R
w N = O

14
15

Figure 2.3 Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)

purchase_hour
Z

0

[ e T+ = A B & [ N ' B o B

-
—

12
13
14

-- Select only orders from Sao Paulo state

3

total_orders

981
506
239
119
110
84
219
551
1232
1976
2573
2731
2601
2809
2777

Row
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

purchase_hour/ total_orders
“

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

1976
2573
2731
2601
2809
2777
2720
2811
2609
2378
2495
2562
2549
2380
1734

12| Page



Timing is Everything: Understanding Brazilian Customer
Shopping Habits
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2,800
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2,720
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3K
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total_orders

Timing is Everything: Understanding Brazilian Customer
Shopping Habits
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Timing is Everything: Understanding Brazilian Customer
Shopping Habits
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Figure 2.4 Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)
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3. Evolution of E-commerce orders in the Brazil region:

3.1 Get month on month orders by states

(Figure 3 BigQuery: Get month on month orders by states), this query begins with a SELECT statement
that specifies three columns to be retrieved: "EXTRACT(MONTH FROM order_purchase_timestamp)"
aliased as "order_month", "c.customer_state", and "COUNT(DISTINCT o.order_id)" aliased as
"order_count." The "order_purchase_timestamp" column is likely a timestamp column that represents
the date and time when the order was made, and the "o.order_id" column is likely a unique identifier for
each order. The EXTRACT() function is used to extract the month component from the
"order_purchase_timestamp" column, which will be used to group the results by month. The
"c.customer_state" column likely represents the state where the customer who made the order is located.
The COUNT(DISTINCT) function is used to count the number of distinct order IDs, which represents the
number of orders made in each month for each state.

The query then uses a JOIN clause to combine the "orders" and "customers" tables based on the condition
"o.customer_id = c.customer_id". This indicates that the "customer_id" column in the "orders" table is
being matched with the "customer_id" column in the "customers" table, presumably to link the order data
with the corresponding customer data.

Next, the query uses a WHERE clause to filter the results based on the "order_purchase_timestamp"
column, specifying a date range between '2016-09-04 21:15:19 UTC' and '2018-10-17 17:30:18 UTC'. This
restricts the analysis to orders made within this time frame.

The query then uses a GROUP BY clause to group the results by "order_month" and "c.customer_state,"
which represents the month and state of the orders, respectively. This allows for calculating the order
counts for each month and state separately.

Finally, the query uses an ORDER BY clause to sort the results by "order_month" and "c.customer_state,"
which represents the chronological order of the months and the alphabetical order of the states,
respectively.

In summary, this SQL query retrieves order data from a database, joins it with customer data, filters the
results by a specific date range, groups the results by month and state, and orders them chronologically by
month and alphabetically by state to analyse the evolution of e-commerce orders in the Brazil region over
time.

-- Evolution of E-commerce orders in the Brazil region:

-- Get month on month orders by states
SELECT
EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month,
-- DATE_TRUNC( 'month', o.order_purchase_timestamp) AS order_month,
c.customer_state,
COUNT(DISTINCT o.order_id) AS order_count
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FROM

target_business.orders o
JOIN target_business.customers ¢ ON o.customer_id = c.customer_id

WHERE

o.order_purchase_timestamp >= '2016-09-

04 21:15:19 UTC' AND o.order_purchase_timestamp < '2018-10-17 17:30:18 UTC'

GROUP BY
order_

month,

c.customer_state

ORDER BY
order_

month,

c.customer_state;

Figure 3 BigQuery: Get month on month orders by states

Query results:

Row P order_month

i

o e M

o o 0 0~

Row 4
35
36
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%

MR R R NN RN RN R RN NN N NN

g

customer_state
AC
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customer_state
ES
GO
MA
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MS
MT
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PE
Pl
PR
RJ
RN
RO
RR
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sSC

%

order_count .
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39
12
11
264
99
151
159
164
66
971
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33
113
55
order_count
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31

25

473
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Figure 3.1 Get month on month orders by states
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Row

306
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314
315
316
317
318
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322

order_month
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12
12
12
12
12
12
12

Y
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PR
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RN
RO
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sSC
SE
SP
TO
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AM
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DF

customer_state

MA
MG
MS
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PA
PB
PE
Pl
PR
RJ
RN
RO
RS
sC
SE
sSP
TO

443
990
51
23
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24
3357
19
6
39
16
4
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101
196

order_count

M
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36
50
58
37
103
23
271
783
30
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193
20
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Tracking the States: Month-on-Month Ordering
Insights

customer_state order_count -
1 Sp 41,745 I order_count
2. RJ 12,852 50K
3. MG 11,635
40K
4 RS 5,466
5. PR 5,045 g 20K
6. sc 3,637 g
8
7 BA 3,380 S 20K
8 DF 2,140
) ES 2,033 10K
10. GO 2,020
0
1. PE 1,652 SP RJ MG RS PR SC BA DF ES GO
1-27727 < > customer_state

Figure 3.2 Get month on month orders by states

Tracking the States: Month-on-Month Ordering
Insights

customer_state Ol'del'_COUITt e
12. CE 1,336 [ order_count
13. PA 975 50K
14. MT 907
40K
15. MA 747
16. MS 715 £ 30K
17. PB 536 g
g
18. Pl 485 S 20K
19. RN 485
20. AL 413 10K
21. SE 350
0
22, TO 280 SP RJ MG RS PR SC BA DF ES GO
1-27127 4 p customer_state

Figure 3.2 Get month on month orders by states
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Tracking the States: Month-on-Month Ordering
Insights

customer_state order_count ~
17. PB 536 Il order_count
18. Pl 495 50K
19. RN 485
40K
20. AL 413
21 SE 350
;:; 30K
22, TO 280 ]
L\I
@
O
23. RO 253 2 20k
24 AM 148
25. AC 81 10K
26 AP 68
7. RR 16 0
: SP RJ MG RS PR SC BA DF ES GO
1-27/27 customer_state

Figure 3.2 Get month on month orders by states

3.2 Distribution of customers across the states in Brazil

(Figure 3.3 BigQuery: From North to South: Exploring Customer Distribution in Brazil) This query begins
with a SELECT statement that specifies two columns to be retrieved: "c.customer_state" and
"COUNT(c.customer_id)" aliased as "customer_count." The "c.customer_state" column likely represents
the state where the customers are located, and the "c.customer_id" column is likely a unique identifier for
each customer. The COUNT() function is used to count the number of customers in each state.

The query then uses a JOIN clause to combine the "customers" and "geolocation" tables based on the
condition "c.customer_zip_code_prefix = g.geolocation_zip_code_prefix". This indicates that the
"customer_zip_code_prefix" column in the "customers" table is being matched with the
"geolocation_zip_code_prefix" column in the "geolocation" table, presumably to link the customer data
with their corresponding geographical location.

Next, the query uses a GROUP BY clause to group the results by the "customer_state" column, which
represents the state where the customers are located. This is followed by an ORDER BY clause that sorts
the results in descending order based on the "customer_count" column, which represents the count of

customers in each state.
In summary, this SQL query retrieves customer data from a database, joins it with geolocation data, groups

the results by state, and orders them by the number of customers in each state, providing insights into
customer distribution in Brazil from north to south.
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--From North to South: Exploring Customer Distribution in Brazil

SELECT c.customer_state, COUNT(c.customer_id) as customer_count

FROM target_business.customers c

JOIN target_business.geolocation g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix

GROUP BY c.customer_state
ORDER BY customer_count DESC;

Figure 3.3 BigQuery: From North to South: Exploring Customer Distribution in Brazil

The distribution of customers across the states in Brazil is as follows:

Query results:

Row P customer_state P customer_count p Row P customer_state p customer_count .
T e 5620450 107 ™t 122400
5| 3015700 1 PE 114588
3 MG 2878728 12 oF 93304
2| s 805350 13 PA 83554
= | em 626035 14 CE 63507
6 | sc s38604 15 MS 61484
=™ 265875 16 MA 53383
8 | es 16654 17 AL 34861
s | co 133151 18 PB 27714

10 MT 122400 B SE 24584
11 PE 114588 o " 23913
2 | o 93304 21 RO 21239
= ra 83554 22 RN 20595
s | o 63507 23 TO 17509
15 Ms 61484 24 | AC 7649
16 MA 53383 25 | AM 9587
17 AL 34861 26 | AP 4912
18 PB 27714 27 | RR 2087

Figure 3.4 Query results: From North to South: Exploring Customer Distribution in Brazil

(Figure 3.4 Query results: From North to South: Exploring Customer Distribution in Brazil), the query
results provided show data for customer counts in different states of Brazil. Here is a breakdown of
the information:

SP: S3o Paulo - 5,620,450 customers

RJ: Rio de Janeiro - 3,015,709 customers
MG: Minas Gerais - 2,878,728 customers
RS: Rio Grande do Sul - 805,359 customers
PR: Parand - 626,035 customers

SC: Santa Catarina - 538,624 customers

A
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.

BA: Bahia - 365,875 customers

ES: Espirito Santo - 316,654 customers
GO: Goias - 133,151 customers

MT: Mato Grosso - 122,400 customers
PE: Pernambuco - 114,588 customers
DF: Distrito Federal - 93,304 customers
PA: Para - 83,554 customers

CE: Ceard - 63,507 customers

MS: Mato Grosso do Sul - 61,484 customers
MA: Maranhdo - 53,383 customers

AL: Alagoas - 34,861 customers

PB: Paraiba - 27,714 customers

SE: Sergipe - 24,584 customers

Pl: Piaui - 23,913 customers

RO: Rondonia - 21,239 customers

RN: Rio Grande do Norte - 20,595 customers
TO: Tocantins - 17,509 customers

AC: Acre - 7,649 customers

AM: Amazonas - 5,587 customers

AP: Amapa - 4,912 customers

RR: Roraima - 2,087 customers

(Figure 3.4 Query results: From North to South: Exploring Customer Distribution in Brazil ), these results

provide the customer count for each state in Brazil, arranged in descending order from the highest count

in S3o Paulo (SP) to the lowest count in Roraima (RR).

(Figure 3.4 Query results: From North to South: Exploring Customer Distribution in Brazil), this

distribution shows the number of customers in each state of Brazil based on the dataset provided, with

the highest number of customers in Sdo Paulo (SP) and the lowest number of customers in Roraima (RR).

Here is more information about S3o Paulo (SP) and Roraima (RR):

Sao Paulo (SP):

S3o Paulo is a state located in the south-eastern region of Brazil and is the most populous state in
the country.

It has the highest number of customers among all the states listed in the query, with a customer
count of 5,620,450.

Sdo Paulo is known for its diverse economy, with a strong focus on industries such as finance,
services, manufacturing, and agriculture.

The capital of Sdo Paulo state is Sdo Paulo City, which is also the largest city in Brazil and one of

the largest cities in the world in terms of population and economic activity.
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S3do Paulo is known for its cultural richness, with a vibrant arts scene, diverse cuisine, and
numerous cultural events and festivals.

Roraima (RR):

Roraima is a state located in the northern region of Brazil, and it has the lowest number of
customers among all the states listed in the query, with a customer count of 2,087.

Roraima is the least populous state in Brazil and is known for its unique geographical feature,
Mount Roraima, which is a tabletop mountain and a popular tourist destination.

The capital of Roraima state is Boa Vista, which is the only capital city in Brazil located entirely
north of the equator.

Roraima is characterised by its rich indigenous culture, with a significant population of indigenous
peoples, and has a unique cultural heritage.

Roraima has a relatively small economy with a focus on agriculture, mining, and renewable
energy resources. It is also known for its natural beauty and ecotourism opportunities, with
several protected areas and national parks within its borders.

From North to South: Exploring Customer
Distribution in Brazil

customer_state customer_count ~
SP 5,620,450 I customer_count
RJ 3,015,709 &M
MG 2,878,728
RS 805,359
PR 626,035 g M
o
[¥]
sc 538,624 5
E
BA 365,875 %
S am
ES 316,654
GO 133,151
MT 122,400
0
PE 114,588 5620450 2878728 626035 365875 133151
3015709 805359 538624 316654 122400
1-27/27 customer_count

Figure 3.4 From North to South: Exploring Customer Distribution in Brazil
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20.

21.

22,

From North to South: Exploring Customer
Distribution in Brazil
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Figure 3.4 From North to South: Exploring Customer Distribution in Brazil
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From North to South: Exploring Customer
Distribution in Brazil
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Figure 3.4 From North to South: Exploring Customer Distribution in Brazil

(Figure 3.4 From North to South: Exploring Customer Distribution in Brazil) The table above shows the

distribution of customers across states in Brazil, with the customer_state column representing the state

code and the customer_count column representing the total number of customers in each state.

The distribution of customers across states appears to follow a skewed distribution, with a few states

having significantly higher customer counts compared to others. The state of Sdo Paulo (SP) has the

highest number of customers at 5,620,450, followed by Rio de Janeiro (RJ) with 3,015,709 customers,
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and Minas Gerais (MG) with 2,878,728 customers. As we move to other states, the number of customers
gradually decreases, with states such as AM (Amazonas), AP (Amapa), and RR (Roraima) having relatively
lower customer counts.

This skewed distribution is further supported by the fact that the states with higher customer counts are
located in the more populous and economically developed regions of Brazil, such as the Southeast and
South regions, while states with lower customer counts are located in less populous and economically
developed regions, such as the North and Northeast regions.

It's important to note that this distribution is based on the dataset provided and may not necessarily
reflect the actual population distribution of customers across states in Brazil. Additionally, other factors
such as market size, population density, economic activity, and customer behaviour could also impact
the distribution of customers across states.

4. Impact on Economy: Analyse the money movement by e-commerce by
looking at order prices, freight and others.

4.1 Get % increase in cost of orders from 2017 to 2018 (include months
between Jan to Aug only) - You can use “payment_value” column in payments
table

(Figure 4 BigQuery: From 2017 to 2018: Calculating the Percentage Increase in Order Costs), this code
uses the EXTRACT function to extract the year and month from the order_purchase_timestamp column
in the orders table. It then calculates the total payment value for orders in 2017 and 2018 separately
using the SUM function with conditional aggregation, and calculates the percentage increase in the total
payment value from 2017 to 2018. The result is grouped by year and month, and ordered by year and
month for better presentation.

--- From 2017 to 2018: Calculating the Percentage Increase in Order Costs
WITH A AS
(
SELECT
EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
SUM(p.payment_value) as cost_of_orders
FROM
target_business.orders o
JOIN
target_business.payments p ON o.order_id = p.order_id
WHERE
EXTRACT(month FROM o.order_purchase_timestamp) BETWEEN 1 AND 8
GROUP BY
1
)
SELECT
ROUND(((a2.cost_of_orders / al.cost_of orders) - 1) * 100, 2) as perc_increase
FROM
Aasal,Aasa2
WHERE
al.year =2017 AND a2.year = 2018;

Figure 4 BigQuery: From 2017 to 2018: Calculating the Percentage Increase in Order Costs
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Query results

Row 4 perc_increase

¢ (3

1 136.98

From 2017 to 2018: Calculating the Percentage
Increase in Order Costs

perc_increase Record Count ~
1 13698 1 I Record Count

136.98

1-1/1 perc_incresse

4.2 Mean & Sum of price and freight value by customer state

(Figure 4.2 BigQuery: State-wise E-commerce Insights: Mean and Sum of Price and Freight Values
Common Table Expression (CTE) to retrieve order items data) In this query, it first create two CTEs -
order_items_cte and customers_cte - to extract the relevant columns from the order_items and
customers CSV files, respectively. Then, it create a combined CTE called combined_data by joining the
order_items_cte, orders, and customers_cte tables on their respective keys.

Finally, it use the combined_data CTE to perform aggregation using AVG and SUM functions to calculate
the mean and sum of price and freight_value columns, respectively, grouped by customer_state. This
will give us the desired result of mean and sum of price and freight value by customer state.

-- State-wise E-commerce Insights: Mean and Sum of Price and Freight Values
-- Common Table Expression (CTE) to retrieve order items data
WITH order_items_cte AS (

SELECT order_id, price, freight_value

FROM target_business.order_items

)

-- Common Table Expression (CTE) to retrieve customers data
customers_cte AS (

SELECT customer_id, customer_state

FROM target_business.customers c

)

-- Common Table Expression (CTE) to combine data from order_items_cte, orders, and customers_cte
combined_data AS (

SELECT c.customer_state, oi.price, oi.freight_value

FROM order_items_cte oi

INNER JOIN target_business.orders o ON oi.order_id = o.order_id

INNER JOIN customers_cte ¢ ON o.customer_id = c.customer_id

)

-- Main query to calculate mean and sum for each customer state
SELECT customer_state,

AVG(price) AS mean_price,

SUM(price) AS sum_price,

AVG(freight_value) AS mean_freight_value,
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SUM(freight_value) AS sum_freight_value

FROM combined_data

GROUP BY customer_state;

Figure 4.2 BigQuery: State-wise E-commerce Insights: Mean and Sum of Price and Freight Values
Common Table Expression (CTE) to retrieve order items data

Query results:

Row 4 customer_state
1 MT
2 MA
8 AL
4 SP
5 MG
6 PE
7 RJ
8 DF
9 RS

10 SE

11 PR
12 PA
13 BA
14 CE
15 GO
16 ES

17 SC
18 Pl

19 PB
20 RN
21 AM
22 RR
23 MS
24 TO
25 AC
26 RO
27 AP

mean_price

148.297184...
145.204150...
180.889211...
109.653629...
120.748574...
145.508322...
125.117818...
125.770548...
120.337453...
153.041168...
119.004139...
165.692416...
134.601208...
153.758261...
126.271731...
121.913701...
124.653577...
160.358081....
191.475215...
156.965935...
135.495999...
150.565961...
142.628376...
157.529333...
173.727717...
165.973525...
164.320731...

sum_price
156453.529...
119648.219..
80314.81
5202955.05...
1585308.02...
262788.029..
1824092.66...
302603.939...
750304.020...
58920.8500...
683083.760...
178947.809..
511349.990...
227254.709...
294591.949...
275037.309...
520553.340...
86914.0800...
115268.079...
83034.9800...
22356.8400...
7829.42999..
116812.639..
49621.7400...
15982.9499...
46140.6400...
13474.2999...

mean_freight_value ,

28.1662843601896
38.257002427184...
35.843671171171...
15.147275390419...
20.630166806306...
32.917862679955...
20.960923931682...
21.041354945968...
21.735804330392...
36.6531688311686...
20.531651567944...
35.832685185185...
26.363958936562...
32.714201623815...
22.766815259322...
22.058776595744...
21.470368773946...
39.147970479704...
42.723803986710...
35.652362948960...
33.205393939393...
42.984423076923...
23.374884004884...
37.246603174603...
40.073369565217...
41.069712230215...
34.006097560975...

sum_freight_value

29715.430000000102
31523.770000000033
15914.5899999939991
718723.0699999833
270853.46000000357
59449.6599999999
305589.31000000035
50625.499999993811
135522.74000000212
14111.469999999983
117851.68000000139
38699.300000000039
100156.67999999883
48351.589999999924
53114.979999999865
49764.599999999889
89660.260000000431
21218.200000000033
25719.730000000029
18860.100000000013
5478.8899999999967
2235.19
19144.030000000006
11732.680000000013
3686.7499999999991
11417.379999999996
2788.5000000000009
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5. Analysis on sales, freight and delivery time

5.1 Calculate days between purchasing, delivering and estimated delivery

(Figure 5 BigQuery: Calculate days between purchasing, delivering and estimated delivery), to calculate
the days between purchasing, delivering, and estimated delivery, | use the following formula:

= Days between purchasing and delivering = carrier_delay + customer_delay
= Days between purchasing and estimated delivery = estimated_delivery_delay

The "order_id" is the unique identifier for each order. "carrier_delay" represents the number of days of
delay caused by the carrier in delivering the order. "customer_delay" represents the number of days of
delay caused by the customer in receiving the order. "estimated_delivery_delay" represents the
estimated number of days for delivery as provided by the seller.

The results will provide the time duration in days between the different stages of the order process,
including the time it took for the carrier to deliver the order, the estimated delivery time provided by the
seller, and any delays caused by the customer. This analysis can help identify patterns or trends in sales,
freight, and delivery time, and provide insights for improving order management and customer

satisfaction.

--Analysis on sales, freight and delivery time
--Calculate days between purchasing, delivering and estimated delivery
WITH order_info AS (
SELECT
o.order_id,
o.order_purchase_timestamp,
o.order_delivered_carrier_date,
o.order_delivered_customer_date,
o.order_estimated_delivery_date
FROM
target_business.orders o
)
, order_delays AS (
SELECT
order_id,
DATE_DIFF(order_delivered_carrier_date, order_purchase_timestamp, DAY) AS carrier_delay,
DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS customer_delay,
DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY) AS estimated_delivery_delay
FROM
order_info
)
SELECT
order_id,
carrier_delay,
customer_delay,
estimated_delivery_delay
FROM
order_delays;

Figure 5 BigQuery: Calculate days between purchasing, delivering and estimated delivery
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Query results

Row 4 order_id carrier_delay 4
1 f88aac7ebcch37f19725a0753... 9
2 790cd37689193dca0d00d2feb... 2
3 49db7943d60b6805c3a41f547... 6
4 063b573b88fcB0e516abad7df... 22
5 ab8ce1686d536ca72bd2dadc4... 33
6 45973912e490866800c0aeas ... 18
7 cda873529ca7ab71f677d5ec’... 39
8 ©ad20687129da8f5d89d831bb... 1
9 6f028cch7d612af251aa442a1f... 1

10 8733c8d440c173e524d2fab80... 0
" 986dfd5411ch5a65f3fe024bdb... 0
12 34d981¢2cff2bb39afdebb3f42... 1
13 369d4391cc475hb184dab61af43... 1
14 7cfa6258a4b606dc9223e212¢... 3
15 1769cdad44{0f8456b101d679f1... 4
16 195416246665b8268100ef5fd... 2
17 7797a381b974bc0ac41437132... 3
Row 4 order_id , carrier_delay P
35 3213c825fd43c3d2aaz7fed77... 1
36 113d94766ba74161d06ddd6d9... 1
37 €a6290724297395725936319... 1
38 5b9b9b9f3470db72620013b03... 1
39 4ab2f2ac4c50d1a98dab6do54... 5
40 54282e97161c23b78330¢15b1... 1
4 a2801b8cd69a7543e074b6C66... 1
42 0a7beb2015960a4d8c4ec8bbd... 27
43 6ca46f2b9a159292964768251... 2
44 0efd0bc268d34da3f01f4ff25a... 4
45 2e22dc2fce65e5b9d73a11d71... 18
46 2a06568281fa1a485b9ba5fac... 0
47 €9874fdedBede77b6b9d785ac... 1
48 aB1957953164f65e49dd6af39... 4
49 583f25389c1ba1869b3311c5c... 2
50 83b5512cab9d85f6f644b4d28.. 1
51 3a2b0d4a2b00020fddccod625... 1

customer_delay estimated_delivery_delay
4

customer_del ay,

null
null
null

null

null

null

null

nuil
null

null

null

null

null

estimated_delivery_delay

56
46
41

41

66
51

50
52
41
43

50

6
44
54
56
54
56
4

3

3
47

43
45
45

Row

order_id

18 cb34150c7912c6aB48be6a756...
19 b5c409747127801a2ef067fh50...
20 77123692722eeb%0408b713bf...
21 92e2615288bae316687074b5...

22 2e7a8482f6fb09756ca50c10d...

23 9c94a4ea2f7876660fabf1b59b...
24 49bf06962eeb0701f8757f0a7d...
25 3826dc0f541¢9dff3f0c72009f...
26 97d2fsfe76f2f253b8291e17b5...
27 3f913d30288¢117e41ffeScc74...
28 e81600d4371046078150abg4...

29 2ee460773e708be4e0208745a...
30  a3d1ef2562cf71542edfedO6cl...
31 3aala75931649d9e3e83aaal...
32 9670e04f62098cb2eb977a5d5...
33 5cb8558cbb7c0c2f00f434685...

34 8f4d9ae2f2a9008353f4295f29...

order_id
/89ef8eb4/844/63c9615e815...

971dacce5950705b07fe767ccof .
S5cca24359ca7443aab09e17be...
d16d1a7491ec2a06c392744f9...
8ad883016b6266c5chbface4f...
ceecac582f10037ad46fd4fdcs...
ba16a6de753feb4dc0ab716¢cC...
8f89466a1d909284287823b13...
8937c3e485f73f480931feacas...
6ed4f19dc97f2a4b5d0f156512...
b6659c7944e48c1be78a188b4...
62b7574be0b7a8465822312b...
127b06830315a6224€760859...
58b87ea5983b516a65¢c224359...
cf52¢3631e531c83e5f92681b..
d5ab426a149bfee66ff88dbIch...
a91e25d9e242b0545cddf83a2...
9b95554e4a79777fcb0168932...

0 nufl
7 null

n null

1 null

carrier_delay p cuslomer_dela;
n’ 25"

1 20

3 1
14
14

carrier_delay P customer,dela; estimated_delivery_delay

-
47

46
52
59
45
142

62
54
49
45
45
52
42
58
54

estimated_delivery_delay

%
40

40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40

Calculate days between purchasing, delivering and
estimated delivery

order_id
1. da81fbc27b55e0f3d2813cf2078d...
2. 97f48024fcc76f1898e397ad6966...
3. 8b7fd198ad184563c231653673e...
4. 866314550f6d7a55c82917d9b44...
5. 5cc475¢c7c03290048eb2e742cdé...
6. a4a57f1ffa25b90deadf150fee8od...
7. 2805499c211b52dfc1e64a1349¢ef..
8 2631dba338efbceadclace77oe2l.
9. 7d86c4aa%9e59504b23116C7cabs...
10. bfbd0f9bdef84302105ad712db64...
11. 5d6e9993ecc20a5%e637ce71185..

carrier_delay -

1-50/99441

P

125

107

104

66

62

a1

55

55

54

53

52

B carrier_delay
20K

15K

delay

! 10K

carrier.

5K

24 23 25

26 21

22 19

estimated_delivery_delay

Figure 5.1 Calculate days between purchasing, delivering and estimated delivery
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5.2 Find time_to_delivery & diff_estimated_delivery. Formula for the same

given below:

o time_to_delivery = order_purchase_timestamp-
order_delivered_customer_date

o diff_estimated_delivery = order_estimated_delivery_date-
order_delivered_customer_date

(Figure 5.2 Find time_to_delivery & diff_estimated_delivery), in this query, | create a CTE called
order_data that selects the necessary columns from the orders table, including order_id,
order_purchase_timestamp, order_delivered_customer_date, and order_estimated_delivery_date.
Then, we use the TIMESTAMP_DIFF function to calculate the time difference in hours between
order_purchase_timestamp and order_delivered_customer_date as time_to_delivery, and between
order_estimated_delivery_date and order_delivered_customer_date as diff_estimated_delivery.
Finally, select order_id, time_to_delivery, and diff_estimated_delivery from the order_data CTE.

WITH order_data AS (
SELECT
order_id,
order_purchase_timestamp,
order_delivered_customer_date,
order_estimated_delivery_date
FROM
‘target_business.orders’
)
SELECT
order_id,
TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, HOUR) AS time_to_delivery,
TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, HOUR) AS diff_estimated_delivery
FROM
order_data;

Figure 5.2 BigQuery: Find time_to_delivery & diff_estimated_delivery
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Query Results

Row

181
182
183
184
185
186
187
188
189
190
191

192
193
194
195

#]

order_id

d3e38f61c91f2cdbf65e9e2c02...
d7918e406132d7c81f1b84527 ...

2721cdbb603d72b34553d2e4...
dfc5a5525471e9341af3ad103...

eedd37f7666f4649a942fad119...
a969d2592327e7f49ce1f3edfc...
92d132b6237a2bb7debh7eacl...

6c483afc20c0d15a5d0d7d35e...
b2ad7cad7381ae63e968c60fa...
f1f707a756579d773b3c1a28d...
1a0f86a669f41850ec641339c...
906fa2ba215b24e3888dc3f8c...
8ef83b451028f1¢c25c5092740...
7af37eeddc46¢55638ce1c2b0...
3e60f029bab712985ebe5bb54...

#]

time_tc:-_deliuer{y diff_estimated_delivery

298
840
202
365
213

77
169
483

91
168

44
255
365
134
364

Figure 5.3 Query results: Find time_to_delivery & diff_estimated_delivery

321

(Figure 5.3 Query results: Find time_to_delivery & diff_estimated_delivery), the given data appears to

be a table with information related to orders, including order IDs, time taken for delivery (in days)

denoted as "time_to_delivery", and the difference between the estimated delivery date and the actual

delivered customer date denoted as "diff_estimated_delivery". Let's break down the results:

= Row 182: The order with ID "d7918e406132d7c81f1b845276b03a3b" took 840 days for delivery,
and the estimated delivery date was 90 days earlier than the actual delivered customer date.

=  Row 183: The order with ID "2721cdbb603d7ab34553d2e44a6f9ae0" took 202 days for delivery,
and the estimated delivery date was 481 days after the actual delivered customer date.

= Row 184: The order with ID "dfc5a5525471e9341af3ad103adbef79" took 365 days for delivery,
and the estimated delivery date was 297 days after the actual delivered customer date.

= Row 185: The order with ID "ee4d37f7666f4649a942fad1192bb2f4" took 213 days for delivery,
and the estimated delivery date was 460 days after the actual delivered customer date.

= Row 186: The order with ID "a969d2592327e7f49cel1f3edfc7658eb" took 77 days for delivery,
and the estimated delivery date was 410 days after the actual delivered customer date.
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The same pattern continues for the remaining rows, where "time_to_delivery" represents the time
taken for delivery in days, and "diff_estimated_delivery" represents the difference between the
estimated delivery date and the actual delivered customer date in days. The specific meaning and
implications of these values may depend on the context of the business or system for which this data is
relevant.

5.3 Group data by state, take mean of freight_value, time_to_delivery,
diff_estimated_delivery

(Figure 5.5 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery)
avg_freight_value: This column shows the average freight value for orders in each state. Freight value is
the cost of shipping for an order, and the average value gives an indication of the average shipping cost

incurred by customers in each state.

avg_time_to_delivery: This column shows the average time taken for delivery of orders in each state.
Time to delivery is calculated as the difference between the order purchase timestamp and the order
delivered customer date, and the average time gives an indication of the average delivery speed in each
state.

avg_diff_estimated_delivery: This column shows the average difference between the estimated delivery
date and the actual delivered customer date for orders in each state. The estimated delivery date is
subtracted from the delivered customer date to calculate this difference, and the average value gives an
indication of how closely the estimated delivery dates align with the actual delivery dates in each state.

Overall, these results provide insights into the average shipping cost, delivery speed, and accuracy of
estimated delivery dates for orders in different states.

WITH order_stats AS (
SELECT
c.customer_state AS state,
AVG(oi.freight_value) AS avg_freight_value,
AVG(date_diff( o.order_delivered_customer_date, o.order_purchase_timestamp, day)) AS avg_time_to_delivery,
AVG(date_diff(o.order_estimated_delivery_date, o.order_delivered_customer_date, day)) AS avg_diff_estimated_delivery
FROM
target_business.customers c
JOIN
target_business.orders o ON c.customer_id = o.customer_id
JOIN
target_business.order_items oi ON o.order_id = oi.order_id
GROUP BY
state
)
SELECT
state,
avg_freight_value,
avg_time_to_delivery,
avg_diff_estimated_delivery
FROM
order_stats
ORDER BY
state;

Figure 5.4 BigQuery: Group data by state, take mean of freight_value, time_to_delivery,
diff_estimated_delivery
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Query Results

Row g state
1 AC
2 AL
3 AM
4 AP
5 BA
6 CE
7 DF
8 ES
9 GO

10 MA
11 MG
12 MS
13 MT
14 PA
15 PB
16 PE
17 Pl
18 ) PR
19 RJ
20 RN
21 RO
22 RR
23 RS
24 SC
25 SE
26 SP
27 TO

y

avg_freight_value

40.073369565217405
35.843671171171152
33.205393939393936
34.006097560975618
26.363958936562248
32.714201623815995
21.041354945968383
22.058776595744682
22.766815259322794
38.25700242718446
20.630166806306541
23.374884004884006
28.1662843601896
35.832685185185177
42.723803986710941
32.917862679955796
39.147970479704767

20.531651567944248

20.96092393168248
35.652362948960295
41.069712230215842
42.984423076923093
21.735804330392945
21.470368773946436
36.653168831168855
15.147275390419248
37.246603174603187

avg_time_to_delivery

20.329670329670336
23.992974238875881
25.963190184049076
27.753086419753075
18.774640238935675
20.537166900420793
12.501486199575384
15.192808988764023
14.948177426438281
21.203750000000017
11.515522180072811
15.107274969173847
17.508196721311482
23.301707779886126
20.119453924914676
17.792096219931292
18.931166347992352

11.480793060718735

14.689382157500321
18.873320537428022
19.282051282051292
27.826086956521738
14.708299364095817
14.520985846754517
20.978666666666651

8.25960855241909
17.003225806451624

avg_diff_estimated_delivery

“
20.0109859010989018

7.9765807962529349
18.975460122699381
17.444444444444443
10.119467825142538
10.256661991584851
11.274734607218704
9.7685393258427116
11.372859025032927
9.1099999999999923
12.397151041263502
10.337854500616523
13.639344262295094
13.37476280834913
12.15017064846416
12.552119129438733
10.682600382409184
12.533899805275263
11.14449314293797
13.055662188099804
19.080586080586084
17.434782608695652
13.203000163052323
10.6688628599317
9.1653333333333276
10.26559438451439
11.461290322580641

Figure 5.5 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

5.4. Sort the data to get the following:

5.5 Top 5 states with highest/lowest average freight value - sort in desc/asc

limit 5

Explanation (Figure 5.6 BigQuery: Top 5 states with highest/lowest average freight value - sort in

desc/asc limit 5):

e The state_freight_avg CTE calculates the average freight value for each state by joining the

customers, orders, and order_items tables, and grouping by the customer_state column.

e The outer query selects the state and average freight value from the state_freight_avg CTE.

e The ROW_NUMBER() function is used to assign row numbers to the results based on the average

freight value, in descending and ascending order separately.
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e The results are filtered using the row numbers to limit to the top 5 states with the highest and
lowest average freight value.

e The final results are sorted by average freight value in descending order and state in ascending
order.

-- 5. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5
WITH state_freight_avg AS (
SELECT
c.customer_state AS state,
AVG(oi.freight_value) AS avg_freight
FROM
target_business.customers c
JOIN
target_business.orders o ON c.customer_id = o.customer_id
JOIN
target_business.order_items oi ON o.order_id = oi.order_id
GROUP BY
c.customer_state
)
SELECT
state,
avg_freight
FROM (
SELECT
state,
avg_freight,
ROW_NUMBER() OVER (ORDER BY avg_freight DESC) AS rn_desc,
ROW_NUMBER() OVER (ORDER BY avg_freight ASC) AS rn_asc
FROM
state_freight_avg
)
WHERE
rn_desc <=5 OR rn_asc <=5
ORDER BY
avg_freight DESC, state ASC;

Figure 5.6 BigQuery: Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Row p state p avg_freight P
1 RR 42.984423076923079
2 PB 42.723803986710926
3 RO 41.069712230215835
4 AC 40.0733695652174
5 Pl 39.1479704797048
6 DF 21.041354945968457
7 RJ 20.960923931682579
8 MG 20.63016680630664
9 PR 20.531651567944319

10 SP 15.147275390419265

Figure 5.7 Query results: the top 5 states with the highest and lowest average freight value- sort in
desc/asc limit 5 - sort in desc/asc limit 5
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Here's a query using BigQuery with common table expressions (CTEs) to find the top 5 states with the
highest and lowest average freight value, sorted in descending and ascending order, limited to 5
results:

WITH freight_avg_by_state AS (
SELECT
c.customer_state AS state,
AVG(oi.freight_value) AS avg_freight
FROM
target_business.customers c
INNER JOIN
target_business.orders o ON c.customer_id = o.customer_id
INNER JOIN
target_business.order_items oi ON o.order_id = oi.order_id
GROUP BY
state
)
SELECT
state,
avg_freight
FROM
freight_avg_by_state
ORDER BY
avg_freight DESC
LIMIT
5; -- Top 5 states with highest average freight value

Figure 5.8 BigQuery: top 5 states with the highest average freight value and the bottom 5 states with
the lowest average freight value

In this query, we first create a Common Table Expression (CTE) named avg_freight to calculate the
average freight value for each state by joining the customers, orders, and order_items tables based on
their respective keys. Then, it use the ORDER BY clause to sort the results in descending order for the top
5 states with the highest average freight value, and in ascending order for the bottom 5 states with the
lowest average freight value. Finally, we use the LIMIT clause to limit the results to 5 rows in each case.

Row state avg_freight
y- 4 7
1 RR 42.9844230...
2 PB 42.7238039...
= RO 41.0697122...
4 AC 40.0733695...
5 Pl 39.1479704...
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Row state avg_freight

y p #
1 SP 15.147275390419248
2 PR 20.531651567944248
3 MG 20.630166806306541
4 RJ 20.96092393168248
5 DF 21.041354945968383

Figure 5.9 Query Results: top 5 states with the highest average freight value and the bottom 5 states
with the lowest average freight value

5.6 Top 5 states with highest/lowest average time to delivery

(Figure 6 BigQuery: top 5 states with the highest average freight value and the bottom 5 states with
the lowest average freight value), this query uses two CTEs (Common Table Expressions). The first CTE
order_delivery_time calculates the delivery time in days for each order by subtracting the
order_purchase_timestamp from the order_delivered_customer_date. The second CTE
avg_delivery_time calculates the average delivery time for each state by taking the average of delivery
times grouped by state.

Finally, the outer query selects the states with the top 5 highest and lowest average delivery times by
using ROW_NUMBER() function to rank the states based on average delivery time in ascending and
descending order. The WHERE clause filters the states with ranks less than or equal to 5, and the results

are ordered by rank in ascending and descending order separately.

The given data appears to be a table showing the average time to delivery in days for orders placed at
Target in various states in Brazil. The results are sorted by the average time to delivery, with the top 5
states with the highest average time to delivery and the bottom 5 states with the lowest average time to

delivery. Let's analyse the results:
5.6 a Top 5 states with highest average time to delivery:

e RR (Roraima): The state of Roraima has the highest average time to delivery at Target in Brazil,
with an average of 28.98 days.

e AP (Amapa): Amapa is the second state with the highest average time to delivery at Target in
Brazil, with an average of 26.73 days.

e AM (Amazonas): Amazonas is the third state with the highest average time to delivery at Target in
Brazil, with an average of 25.99 days.

e AL (Alagoas): Alagoas is the fourth state with the highest average time to delivery at Target in
Brazil, with an average of 24.04 days.
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e PA (Pard): Para is the fifth state with the highest average time to delivery at Target in Brazil, with
an average of 23.32 days.

5.6b Lowest 5 states with lowest average time to delivery:

e SP (S3o Paulo): Sdo Paulo is the state with the lowest average time to delivery at Target in Brazil,
with an average of 8.30 days.

e PR (Parand): Parana is the second state with the lowest average time to delivery at Target in
Brazil, with an average of 11.53 days.

e MG (Minas Gerais): Minas Gerais is the third state with the lowest average time to delivery at
Target in Brazil, with an average of 11.54 days.

e DF (Distrito Federal): Distrito Federal is the fourth state with the lowest average time to delivery
at Target in Brazil, with an average of 12.51 days.

e SC (Santa Catarina): Santa Catarina is the fifth state with the lowest average time to delivery at
Target in Brazil, with an average of 14.48 days.

The results show the states in Brazil where Target has the highest and lowest average time to delivery
for orders, which can provide insights into the efficiency of the delivery process in different regions of
the country.

-- 6. Top 5 states with highest/lowest average time to delivery
WITH order_delivery_time AS (
SELECT
c.customer_state AS state,
TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS delivery_time
FROM
target_business.orders o
JOIN
target_business.customers ¢ ON o.customer_id = c.customer_id
)
, avg_delivery_time AS (
SELECT
state,
AVG(delivery_time) AS avg_time
FROM
order_delivery_time
GROUP BY
state
)
SELECT
state,
avg_time
FROM (
SELECT
state,
avg_time,
ROW_NUMBER() OVER (ORDER BY avg_time DESC) AS rank_desc,
ROW_NUMBER() OVER (ORDER BY avg_time ASC) AS rank_asc
FROM
avg_delivery_time

)
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WHERE

rank_desc <=5 OR rank_asc <=5
ORDER BY

rank_desc ASC,

rank_asc ASC;

Figure 6 BigQuery: top 5 states with the highest average freight value and the bottom 5 states with the
lowest average freight value

Row p state p avg_time p
1 RR 28.975609756097562
2 AP 26.731343283582085
3 AM 25.986206896551728
4 AL 24.040302267002513
5 PA 23.316067653276981
6 SC 14.479560191711331
7 DF 12.509134615384616
8 MG 11.543813298106569
9 PR 11.526711354864908

10 SP 8.2980614890725874

Figure 6.1 Query results: top 5 states with the highest average freight value and the bottom 5 states
with the lowest average freight value

5.7 Top 5 states where delivery is really fast/ not so fast compared to
estimated date

Explanation of the query:

e Start by defining a CTE called order_delivery which retrieves relevant columns from the orders
and customers tables, and joins them on the customer_id column.

e Next, in the main query, we select the customer_state column from the CTE as state, and use
aggregate functions COUNT, SUM, and CASE statements to calculate the total number of orders,
fast deliveries (where order_delivered_customer_date is less than or equal to
order_estimated_delivery_date), and delayed deliveries (where
order_delivered_customer_date is greater than order_estimated_delivery_date).

e Then group the results by state and order them by fast_deliveries in descending order.

e Finally, limit the results to the top 5 states with the fastest deliveries using the LIMIT clause.
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The given data appears to be a table showing the total number of orders, fast deliveries, and delayed
deliveries in different states in Brazil. Let's analyse the results:

e SP (S30 Paulo): S3o Paulo has a total of 41,746 orders, out of which 38,107 are fast deliveries and
2,387 are delayed deliveries.

e MG (Minas Gerais): Minas Gerais has a total of 11,635 orders, out of which 10,717 are fast
deliveries and 637 are delayed deliveries.

e RJ (Rio de Janeiro): Rio de Janeiro has a total of 12,852 orders, out of which 10,686 are fast
deliveries and 1,664 are delayed deliveries.

e RS (Rio Grande do Sul): Rio Grande do Sul has a total of 5,466 orders, out of which 4,962 are fast
deliveries and 382 are delayed deliveries.

e PR (Parand): Parana has a total of 5,045 orders, out of which 4,677 are fast deliveries and 246 are
delayed deliveries.

The data provides information about the total number of orders, as well as the number of fast deliveries
and delayed deliveries in different states in Brazil. This can be used to assess the performance of delivery

services in these states and identify any potential issues or areas for improvement.

WITH order_delivery AS (
SELECT
o.order_id,
o.order_status,
o.order_purchase_timestamp,
o.order_delivered_carrier_date,
o.order_delivered_customer_date,
o.order_estimated_delivery_date,
c.customer_state AS state
FROM
target_business.orders o
JOIN
target_business.customers c
ON
o.customer_id = c.customer_id
)
SELECT
state AS state,
COUNT(*) AS total_orders,
SUM(CASE
WHEN order_status = 'delivered' AND order_delivered_customer_date <= order_estimated_delivery_date THEN 1
ELSEO
END) AS fast_deliveries,
SUM(CASE
WHEN order_status = 'delivered' AND order_delivered_customer_date > order_estimated_delivery_date THEN 1
ELSEO
END) AS delayed_deliveries
FROM
order_delivery
GROUP BY
state
ORDER BY
fast_deliveries DESC
LIMIT
5;
6.2 BigQuery: Top 5 states where delivery is really fast/ not so fast compared to estimated date
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Row state
1 sP
MG
RJ

RS

[ 2 IR S 5 B (S

PR

total_orders

41746

11635

12852

5466

5045

fast_deliveries ,
38107
10717
10686
4962

4677

delayed_deliveries
2387

637

1664

382

246

6.3 Query results: Top 5 states where delivery is really fast/ not so fast compared to estimated date

States of Speed: Analysing the Top 5 Regions with
Express or Delayed Deliveries

total_orders ~

state
SP

RJ
MG

RS

mooR W

PR

6.4 Top 5 states where delivery is really fast/ not so fast compared to estimated date

12,852

5,045

41,746

S0K

11,635

40K

5,466

30K

total_orders

(=]
=
=

10K

Il total_orders

2387

1664 637
delayed_deliveries
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6. Payment type analysis:

6.1 Month over Month count of orders for different payment types

The given data appears to be a table showing the count of orders for different payment types at Target

in Brazil on a month-over-month basis. Let's analyse the results:
May 2018: In May 2018, the following counts of orders were made for different payment types:

e UPI (Unified Payments Interface): 1,263 orders
e Credit card: 5,475 orders

e Debit card: 51 orders

e Voucher: 203 orders

June 2018: In June 2018, the following counts of orders were made for different payment types:

e UPI: 1,100 orders

e Credit card: 4,796 orders
e Debit card: 181 orders

e Voucher: 231 orders

July 2018: In July 2018, the following counts of orders were made for different payment types:

e UPI: 1,229 orders

e Credit card: 4,738 orders
e Debit card: 242 orders

e Voucher: 212 orders

August 2018: In August 2018, the following counts of orders were made for different payment types:

e UPI: 1,139 orders

e Credit card: 4,963 orders
e Debit card: 277 orders

e Not defined: 2 orders

e Voucher: 232 orders

September 2018: In September 2018, the following counts of orders were made for different payment

types:

e Not defined: 1 order
e Voucher: 15 orders
e October 2018: In October 2018, the following counts of orders were made for different payment

types:
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e Voucher: 4 orders

The data provides information about the count of orders for different payment types at Target in Brazil

on a month-over-month basis. This can be used to track the trend of payment types used by customers

over time and identify any changes or patterns in payment preferences.

-- Month over Month count of orders for different payment types

WITH monthly_orders AS (

SELECT

DATE_TRUNC(DATE(order_purchase_timestamp), MONTH) AS month,

p.payment_type,

COUNT(DISTINCT o.order_id) AS order_count

FROM

target_business.orders o

INNER JOIN

target_business.payments p ON o.order_id = p.order_id

GROUP BY
month,
payment_type

)
SELECT

month,

payment_type,

SUM(order_count) AS total_orders

FROM
monthly_orders

GROUP BY
month,
payment_type

ORDER BY
month,
payment_type;

6.5 BigQuery: Month over Month count of orders for different payment types

Row month

iy

2016-09-01
2016-10-01
2016-10-01
2016-10-01
2016-10-01
2016-12-01
2017-01-01
2017-01-01
2017-01-01

[==T = B« - T = N ¢ - 7= B ]

2017-01-01
1 2017-02-01
12 2017-02-01
13 2017-02-01
14 2017-02-01
15 2017-03-01
16 2017-03-01
17 2017-03-01
18 2017-03-01

payment_type
credit_card
UPI
credit_card
debit_card
voucher
credit_card
UPI
credit_card
debit_card
voucher
UPI
credit_card
debit_card
voucher
UPI
credit_card
debit_card

voucher

total_orders

63
253

11

197
582

33
398
1347
13
69
590
2008
31
123

Row
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

month

2017-04-01
2017-04-01
2017-04-01
2017-04-01
2017-05-01
2017-05-01
2017-05-01
2017-05-01
2017-06-01
2017-06-01
2017-06-01
2017-06-01
2017-07-01
2017-07-01
2017-07-01
2017-07-01
2017-08-01
2017-08-01

payment_type
UPI
credit_card
debit_card
voucher
UpPI
credit_card
debit_card
voucher
UPI
credit_card
debit_card
voucher
UPI
credit_card
debit_card
voucher
UPI

credit_card

total_orders

4

496
1835
27
115
772
2833
30
171
707
2452
27
142
845
3072
22
205
938
3272
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Row
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

month
2018-01-01

2018-01-01
2018-01-01
2018-01-01
2018-02-01
2018-02-01
2018-02-01
2018-02-01
2018-03-01
2018-03-01
2018-03-01
2018-03-01
2018-04-01
2018-04-01
2018-04-01
2018-04-01
2018-05-01
2018-05-01

-

payment_type
UPI

credit_card
debit_card
voucher
UPI
credit_card
debit_card
voucher
UPI
credit_card
debit_card
voucher
UPI
credit_card
debit_card
voucher
UPI

credit_card

total_orders

1518

5511
109
304

1325

5235

69
219
1352
5674
78
272
1287
5441
97
238
1263
5475

Row
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

month
2018-05-01

2018-05-01
2018-06-01
2018-06-01
2018-06-01
2018-06-01
2018-07-01
2018-07-01
2018-07-01
2018-07-01
2018-08-01
2018-08-01
2018-08-01
2018-08-01
2018-08-01
2018-09-01
2018-09-01
2018-10-01

payment_type
debit_card

voucher
UPI
credit_card
debit_card
voucher
UPI
credit_card
debit_card
voucher
UPI
credit_card
debit_card
not_defined
voucher
not_defined
voucher

voucher

6.6 Query results: Month over Month count of orders for different payment types

total_orders P
517

203
1100
4796

181

231
1229
4738

242

212
1139
4963

277

232

15

Order Intelligence: Analysing Payment Type-wise
Order Counts on a Monthly Basis

payment_type

credit_card
UPI
voucher
debit_card

not_defined

5

total_orders -

76,505
19,784
3,866
1,528

3

total_orders

80K

I total_orders

credit_card

6.7 Month over Month count of orders for different payment types

UP1

voucher

payment_type

debit_card

not_defined
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6.2 Count of orders based on the no. of payment instalments

In this SQL, the order_payments CTE is created by joining the orders and payments tables and selecting the
relevant columns. Then, the main query calculates the count of distinct order_id values for each
payment_installments value from the order_payments CTE, using the COUNT function and grouping by
payment_installments.

-- Count of orders based on the no. of payment instalments
WITH order_payments AS (

SELECT
o.order_id,
p.payment_installments
FROM
target_business.orders o
JOIN

target_business.payments p ON o.order_id = p.order_id
)
SELECT
payment_installments,
COUNT(DISTINCT order_id) AS order_count
FROM
order_payments
GROUP BY
payment_installments;

Figure 6.8 BigQuery: Count of orders based on the no. of payment instalments

Row p payment_installments p order_count

1 f 1 , 49060 ,
2 7 1623
3 10 5315
4 6 3916
5 2 12389
6 4 7088
7 3 10443
8 8 4253
9 9 644
10 5 5234
11 12 133
12 20 17
13 15 74
14 11 23
15 13 16
16 0 2
17 18 27
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18
19
20
27

22
23
24

24
23
14
17
16
21
22

18

[ S & B & « BRI &

Figure 6.9 Query results: Count of orders based on the no. of payment instalments

Instalment Insights: Examining Order Distribution by
Payment Installments

order_count
1. 1
2. 18
3 3
4 17
5. 27
6. 8
7. 5
8 74

payment_installments ~

45

24

21

payment_instaliments

Il payment_instaliments

The given data appears to be a table showing the count of orders based on the number of payment

installments at Target in Brazil. Let's analyse the results:

1)

2)

3)

4)

5)

6)

7)

Payment Installments: 2
a) Order Count: 12,389
Payment Installments: 4
a) Order Count: 7,088
Payment Installments: 3
a) Order Count: 10,443
Payment Installments: 8
a) Order Count: 4,253
Payment Installments: 9
a) Order Count: 644
Payment Installments: 5
a) Order Count: 5,234
Payment Installments: 12
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a) Order Count: 133

8) Payment Installments:

a) Order Count: 17

9) Payment Installments:

a) Order Count: 74

10) Payment Installments:

a) Order Count: 23

11) Payment Installments:

a) Order Count: 16

12) Payment Installments:

a) Order Count: 2

13) Payment Installments:

a) Order Count: 27

14) Payment Installments:

a) Order Count: 18

15) Payment Installments:

a) Order Count: 1

16) Payment Installments:

a) Order Count: 15

17) Payment Installments:

a) Order Count: 8

18) Payment Installments:

a) Order Count: 5

19) Payment Installments:

a) Order Count: 3

20) Payment Installments:

a) Order Count: 1

20

15

11

13

18

24

23

14

17

16

21

22

The data provides information about the count of orders based on the number of payment installments

chosen by customers at Target in Brazil. This can be used to analyse the purchasing behaviour and

preferences of customers in terms of payment options, and to tailor marketing and sales strategies

accordingly.

Actionable Insights:

The given data appears to be a table showing the count of orders based on the number of payment

installments at Target in Brazil. Let's analyse the results:

=  Payment Installments: 2 - There are 12,389 orders with 2 payment installments.
= Payment Installments: 4 - There are 7,088 orders with 4 payment installments.
= Payment Installments: 3 - There are 10,443 orders with 3 payment installments.
= Payment Installments: 8 - There are 4,253 orders with 8 payment installments.
= Payment Installments: 9 - There are 644 orders with 9 payment installments.

43 |Page



Payment Installments

Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:
Payment Installments:

5 - There are 5,234 orders with 5 payment installments.

12 - There are 133 orders with 12 payment installments.

20 - There are 17 orders with 20 payment installments.
15 - There are 74 orders with 15 payment installments.
11 - There are 23 orders with 11 payment installments.
13 - There are 16 orders with 13 payment installments.
0 - There are 2 orders with 0 payment installments.

18 - There are 27 orders with 18 payment installments.
24 - There are 18 orders with 24 payment installments.
23 - There is 1 order with 23 payment installments.

14 - There are 15 orders with 14 payment installments.
17 - There are 8 orders with 17 payment installments.
16 - There are 5 orders with 16 payment installments.
21 - There are 3 orders with 21 payment installments.
22 - There is 1 order with 22 payment installments.
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7. Actionable Insights

(In section 6 payment installments), the given data appears to be a table showing the count of orders
based on the number of payment installments at Target in Brazil. The results:

* Payment Installments: 2 - There are a total of 12,389 orders with 2 payment installments.
» Payment Installments: 4 - There are a total of 7,088 orders with 4 payment installments.
= Payment Installments: 3 - There are a total of 10,443 orders with 3 payment installments.
= Payment Installments: 8 - There are a total of 4,253 orders with 8 payment installments.
= Payment Installments: 9 - There are a total of 644 orders with 9 payment installments.

» Payment Installments: 5 - There are a total of 5,234 orders with 5 payment installments.
= Payment Installments: 12 - There are a total of 133 orders with 12 payment installments.
= Payment Installments: 20 - There are a total of 17 orders with 20 payment installments.

= Payment Installments: 15 - There are a total of 74 orders with 15 payment installments.

» Payment Installments: 11 - There are a total of 23 orders with 11 payment installments.

= Payment Installments: 13 - There are a total of 16 orders with 13 payment installments.

= Payment Installments: O - There are a total of 2 orders with 0 payment installments.

= Payment Installments: 18 - There are a total of 27 orders with 18 payment installments.

» Payment Installments: 24 - There are a total of 18 orders with 24 payment installments.

= Payment Installments: 23 - There is only 1 order with 23 payment installments.

= Payment Installments: 14 - There are a total of 15 orders with 14 payment installments.

= Payment Installments: 17 - There are a total of 8 orders with 17 payment installments.

= Payment Installments: 16 - There are a total of 5 orders with 16 payment installments.

= Payment Installments: 21 - There are a total of 3 orders with 21 payment installments.

= Payment Installments: 22 - There is only 1 order with 22 payment installments.

Actionable Insights for payment:

= Most orders have payment installments ranging from 2 to 5, indicating that customers prefer to
divide their payments into smaller installments.

= There are a significant number of orders with 0 payment installments, which could indicate that
customers are choosing to pay for their orders in full at the time of purchase.

= There are relatively fewer orders with higher payment installments (e.g., 20, 23, 24), indicating that
customers may prefer to avoid longer payment plans.

= Target in Brazil may consider analysing the payment installment options and preferences of their
customers to optimize their payment offerings and attract more customers.

= Target in Brazil may also consider offering flexible payment plans or promotions to encourage
customers to choose higher payment installments and potentially increase order volume.

Overall, the data on payment installments can help Target in Brazil make informed decisions about their
payment options, pricing strategies, and marketing efforts



7.1 Analysing Customer Sentiment:

Natural language processing can be used to build predictive models to perform sentiment analysis on
social media posts and reviews and predict if customers are happy or not. That way, you can automatically
know if your customers are happy or not without manually going through massive number of reviews.

WITH review_orders AS (

SELECT
r.review_id,
r.order_id,
r.review_score,
r.review_comment_title,
--r.review_comment_message,
r.review_creation_date,
r.review_answer_timestamp,
o.customer_id,
o.order_status,
o.order_purchase_timestamp,
o.order_delivered_carrier_date,
o.order_delivered_customer_date,
o.order_estimated_delivery_date

FROM

target_business.order_reviews AS r
JOIN

target_business.orders AS o
ON

r.order_id = o.order_id
)
SELECT
ro.review_id,
ro.order_id,
ro.review_score,
ro.review_comment_title,
--ro.review_comment_message,
ro.review_creation_date,
ro.review_answer_timestamp,
ro.customer_id,
ro.order_status,
ro.order_purchase_timestamp,
ro.order_delivered_carrier_date,
ro.order_delivered_customer_date,
ro.order_estimated_delivery_date
FROM
review_orders AS ro;

Row & review_id order_id & review_score £ review_comment_title p review_creation_date £ review_answer_timestamp P customer_id order_status
1  64b53acf68caledSeebb01436.. 7a4df5d8cff4090e541401a20a... 1 0015-12-17 00:00:00 UTC 00151217 13:33:00 UTC 725e9c75605414b21fd8cBd5a... created
2 094b5d5ffff5d37b6195b4674a. b5359909123fa03c50bdbocfe. 1 0013-01-18 00:00:00 UTC 0014-01-18 23:15:.00 UTC 438449d4af8980d107bf04571... created
3 ce24a21f96199f7e7257d5346f. 90ab3e7d52544ec7bc3363cB2. 5 0006-12-17 00:00:00 UTC 0006-12-17 10:17:00 UTC 7d61b9f4f216052ba664f22e9c. created
4 f28281373ab8815bafafe37121 fab5dad1b0e818e3ccc5cbled 1 0021-05-17 00:00:00 UTC 0024-05-17 16:21:00 UTC 9af2372a1e49340278e7c1ef8 shipped
5 211600709625¢a0053fc9dbaa. 1df2775799eecdf9dd8502425. 1 0016-08-17 00:00:00 UTC 0016-08-17 11:19:00 UTC 1240c2e65c4601ddB60e3a367 shipped
6 b9b2c5330adebIcafdda2dbe 619029465721012983a274b8, 1 0016-08-17 00:00:00 UTC 0016-08-17 16:56:00 UTC 5fcdc97dcb63903fa967 14524 shipped
7 b7d4fc62b489b01ccica564ab. 58ce513a55¢740a3a81e8c8b7. 1 0016-08-17 00:00:00 UTC 0018-08-17 09:43:00 UTC 530d41b47b9ddadbc6f31d856 shipped
8 903db4bec5b321c64960b1fba. 088683f795a3d30bfd61152c4f 1 0017-08-17 00:00:00 UTC 0017-08-17 13:02:00 UTC 58d89fd1f863819ff9b040734f. shipped
9 b0611ce5526d4e0f9e8b6962f 23380313¢19905dd1651bd21 5 0016-08-17 00:00:00 UTC 0016-08-17 18:45:00 UTC bca042dd52272f582872f0abb. shipped

10 ea53d327db6820d546827343... 2e03cb2541b48c78aebca2dbf. 4 0008-06-18 00:00:00 UTC 0011-06-18 00:12:00 UTC fbeb0b67308075646ececaf2e... shipped
11 85e43a8bc028cal1bad4dBice... d1b7637acd3a7a42101faf906... 1 Too bad 0008-06-18 00:00:00 UTC 0011-06-18 06:44:00 UTC a1b3147271766174415e8bed... shipped
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order_purchase_timestamp
2017-11-2511:10:33 UTC
2017-12-05 01:07:52 UTC
2017-11-06 13:12:34 UTC
2017-04-20 12:45:34 UTC
2017-07-13 11:03:05 UTC
2017-07-11 13:36:30 UTC
2017-07-29 18:05:07 UTC
2017-07-13 10:02:47 UTC
2017-07-19 12:44:59 UTC
2018-05-11 18:24:01 UTC
2018-05-20 18:58:04 UTC

order_delivered_carrier_date

2017-04-2411:31:17 UTC
2017-07-18 18:17:30 UTC
2017-07-13 17:55:46 UTC
2017-07-31 16:41:59 UTC
2017-07-20 20:02:58 UTC
2017-07-20 14:38:54 UTC
2018-05-14 15:49:00 UTC
2018-05-24 06:53:00 UTC

order_delivered_customer_date

order_estimated_delivery_date
2017-12-12 00:00:00 UTC
2018-01-11 00:00:00 UTC
2017-12-01 00:00:00 UTC
2017-05-18 00:00:00 UTC
2017-08-14 00:00:00 UTC
2017-08-14 00:00:00 UTC
2017-08-14 00:00:00 UTC
2017-08-14 00:00:00 UTC
2017-08-14 00:00:00 UTC
2018-06-06 00:00:00 UTC
2018-06-06 00:00:00 UTC

Targeting Excellence: A Comprehensive Analysis of
Review Scores and Comments

review_comment_title
1. null
2. | recommend
3. Good
4 Great
5 ery good
6. Ain
7. Super recommend
8. super recommend
9. Excellemt
10 10
n excellent

review_score -

1-50/ 3366

360,020

4,430
2,533
2,308
2,269
2,222
1,762
1,383

289

799

TEVIEW_SCOre

300K

200K

100K

I review_score

3 1 2

review_score

Targeting Excellence: A Comprehensive Analysis of
Review Scores and Comments

review_comment_title
12, Perfect
13. Eon
14, very good
15. Aln product
16. great
17. Delivery RA | Pida
18. Satisfied
19. QK
20. | loved
21. super recommended
22. Good product

review_score ~

1-50/ 3366

503

468

397

381

370

329

326

313

N3

3z

305

review_score

300K

200K

100K

I review_score

3 1 d

review_scors
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very often it is easier to perform analysis using SQL or BigQuery on data we have right in the tables and
then move forward to ML/Al/Data science and engineering in Python .

- with an additional import statement for WordCloud from the wordcloud library. The WordCloud cl
ass is used for generating word clouds, which are visual representations of text data where the
size of each word represents its frequency or importance in the text.

SELECT
review_comment_title
FROM
target_business.order_reviews
ORDER BY

review_comment_title DESC;

1 # imports the necessary Llibraries for data analysis and visualisation in Python
import pandas as pd

import numpy as np

import matplotlib.pylab as plt

import seaborn as sns

# visual representations of text data

from wordcloud import wordCloud

plt.style.use('ggplot")

00 =~ O L0 s Ll pa

=

# loading dataset
df = pd.read_csv('review comment title.csv')

P

import pandas as pd
pd.set option('display.max columns', 508)
#pd. set_option( ‘max_columns', 260)

[V N

#present a DataFrame object in Python 1 # Dataframe shape
2 |df 2 df.shape
review_comment_title (11549, 1)
0 0]
1 A 1 # dtypes
2 df.dtypes
2 Hee _
3 A review comment title object
dtype: object
4 s}
1 df.info()
11544 **
11545 o <class 'pandas.core.frame.DataFrame’>
RangeIndex: 11549 entries, @ to 11548
11546 - Data columns (total 1 columns):
11547 - #  Column Non-Null Count Dtype
11548 5 Tl

® review comment title 11549 non-null object
dtypes: object(1)
memory usage: 90.4+ KB

11549 rows x 1 columns

1 # describe
2

df.describe() 1 df.describe()
review_comment_title review_score
count e count 29876.000000
unique 3365
mean 2.368155
top | recommend
std 1.214166
freq 1063
min 1.000000
1 # Dataframe shape 25% 1.000000
2 df.shape
50% 3.000000
(11549, 1)
75% 3.000000
max 4.000000
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1 df['length'] = df[ review comment_title'].apply(len) 1 # Let's see the logest message
2 df.head() 2 df[df['length'] == 40.000000][ review_comment_title'].iloc[@]

'Pos-sales leaves something to be desired’
review_comment_title length

0 1 1 # Let's see the shortest message

2 df[df['length'] == 1.e@e@eee0][ review_comment_title'].iloc[e]
1 A 2

|ﬂ|

2 466 _ 5
3 A 1 1 # Let's see the message with mean Length

2 df[df['length’'] == 11.000000][ review_comment_title"].iloc[@]
4 k) 1

'oim Quality’

1 df['length'].plot(bins=100, kind="hist") 1 sentences = df['review_comment_title'].tolist()
2 len(sentences)

<AxessSubplot:ylabel="Frequency"'>» 11540

1400
1200

1000

V

8OO -

I‘H‘H"H“I
A i,
0 5 15 20 25

10 D 0B 4

Fregquenc
z
=1

o=
=]

1 df.length.describe()

count 11549.000000

mean 11.825613
std 6.866476
min 1.0600000
25% 6.000000
50% 11.600000
75% 16.000000
max 40.000000

Mame: length, dtype: floates

1 print(sentences)

d correctly', 'delivered before the deadline', 'delivered', 'delay delivery', ‘'delay', ‘'delay', 'de =
lay', 'defective product’, 'defective product', 'deadline’, 'deadline’, ‘'deadline’, 'deadline’, ‘'de
adline', 'damaged product', 'cost x benefit \xad cio', 'correct', 'cool', ‘'coel', 'cool', 'continen
tal shelf', 'consistent with the announced', 'confusing kind of delivery', 'confidential’, 'complai
nt', 'complaining', 'complaining’, ‘complaining', 'commitment', ‘capinhas', 'cancellation', 'cancel
ed', 'brushes', 'broken tablets', 'broke', 'bread', 'bottom', ‘boot', ‘'blanket set', ‘'blanket’, ‘'bi
ke', 'better cost benefit', 'beauty', 'beautiful products®', 'be careful’', 'banjo', 'bad service’,

'bad products', 'bad product quality', 'bad product', 'bad product', 'bad product', 'bad', 'bad’',
‘bad', 'bad', 'bad', 'bad', 'bad', 'bad', 'bad', 'bad', 'bad', 'bad', 'bad', 'bad', 'backward', 'aw
aiting solution', "awaiting return', ‘awaiting product®, 'atA ® hj n I received the product’, 'at t

he time not recommended', 'as expected', 'arrived very fast', 'arrived right', ‘arrived quickly’,
‘arrived on time', 'arrived fast', ‘arrived before the deadline ', 'arrived before the deadline’,
‘arrived before the deadline', ‘approved purchase', 'appreciate', 'an excellent site', 'amazing’,
‘amazing', ‘'amazing', 'always recommend', 'always present', 'all very well', 'all very well', 'all
very well', 'all very well', 'all very well', 'all very well', 'all very well', 'all very well', 'a
11 right with the purchase', 'all right', 'all quiet', 'accusation of receipt', 'absence of cable’,
‘abdominal range', 'aaa', 'a pig in a poke', 'a pig in a poke', 'a pessimal servant', 'a cartoon ca

me to miss', ' ', 'Zero grade zero', 'Zero grade FALSE PRODUCT', 'Zero', 'Zero', 'Zero', 'Zero', 'Z
ero', 'Zero', 'Zero', 'Zero', 'Zero', 'Zero', 'Zenildo', 'ZMA', 'You pay and not deliver', 'You pay
2 and gat 1'. 'Wau ouws need tn imnrowve'. 'Waou can trust'. 'Vou can hiv'. 'You are 18' . 'Ves wverv g
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sentences_as_one_string =" ".join(sentences)

sentences _as_one_string

recommend super recommend super recommend super recommend super recommend super recommend Super rec .
ommend super recommend super recommend super recommend super recommend super recommend super recomm
end super recommend super recommend super recommend super recommend super recommend super recommend
super recommend super recommend super recommend super recommend super recommend super recommend sup
er recommend super recommend super recommend super recommend super recommend super recommend super
recommend super recommend super recommend super recommend super recommend super recommend Super rec
ommend super recommend super recommend super recommend super recommend super recommend super recomm
end super recommend super recommend super receipt super maximum I recommend super super strange pro
duct still delivered sombrite so-so so-so size simple product shipping shipping shipping sensationa
1 T recommend sensational sensational sensational scatter satisfied satisfied satisfied satisfied s
atisfied satisfied satisfied satisfactory satisfaction with the service satisfaction sasty rewarded
reward reward reward reward reward reward returned product returned product research before buying
resalted reromising request replica product repentance remote reliable reject reimbursement regular
regular regular regular regular refill ink pen shaffe recommended recommended recommended recommend
ed recommended recommended recommended recommended recommended recommended recommended recommended
recommended recommended recommended recommended recommended recommended recommended recommended rec
ommended recommended recommended recommended recommended recommended recommended recommended recomm
ended recommended recommended recommended recommended recommended recommended recommended recommend
ed recommendable recommendable recommendable recommend yes recommend very well recommend very good
received correctlv rebotec reallv enioved reallv enioved ratio rando deliverv rangine aguiet auestio

from wordcloud import WordCloud

plt.figure(figsize=(20,20))
plt.imshow(WordCloud().generate(sentences _as one string))

<matplotlib.image.AxesImage at @x1b3a3d2bb5e>
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<matplotlib.image.AxesImage at ©x1b3a3d2bb50>

7.2 Actionable Insights

Insights and Recommendations (Figure 1.6 DISTINCT Cities and States of customers ordered during the
given period: 4259):

= Geographic Distribution: The customers who made orders during the given period are located in
various cities and states in Brazil. Some of the states with a higher number of orders are AP
(Amapa), BA (Bahia), and AM (Amazonas). This indicates that Target has a wide reach and
customer base across different regions in Brazil.

= Targeting High-Demand States: Based on the data, it appears that Amapa (AP), Bahia (BA), and
Amazonas (AM) are the states with higher customer orders. Target can focus on these states to
further expand their customer base, increase marketing efforts, and tailor their product offerings
to the preferences and demands of customers in these states.

= Understanding Customer Preferences: Analysing the cities and states of customers who made
orders can provide insights into their preferences and buying behaviour. Target can use this
information to better understand customer needs, preferences, and shopping patterns in
different regions. This can help in developing targeted marketing strategies and promotions to
cater to the specific preferences of customers in different cities and states.

= |ocalisation Strategies: Target can leverage the data on cities and states of customers to
implement localization strategies. This can include customizing product offerings, pricing, and
promotions based on the preferences and demands of customers in different cities and states.
For example, offering region-specific products or promotions during local festivals or events can
help Target to better connect with customers and increase sales.

Overall, analysing the cities and states of customers who made orders during the given period can
provide valuable insights.



8. Recommendations

= |Improve Delivery and Shipping Strategies: Analysing the cities and states of customers can also
provide insights into the logistics and shipping requirements for different regions. Target can use
this information to optimise their delivery and shipping strategies, such as improving delivery
times, reducing shipping costs, and enhancing customer experience in different cities and states.
This can help in increasing customer satisfaction and loyalty.

= Customer Segmentation: Target can segment customers based on their cities and states to gain a
deeper understanding of customer preferences, behaviours, and needs in different regions. This
can help in creating targeted marketing campaigns, promotions, and product offerings for
different customer segments, leading to increased sales and customer retention.

= Customer Feedback and Reviews: Target can also use customer feedback and reviews from
different cities and states to identify any specific pain points, issues, or areas of improvement.
Analysing customer comments and reviews can provide valuable insights into customer
satisfaction, product quality, and service levels in different regions. Target can use this feedback
to address any issues and continuously improve their products and services in different cities and
states.

= |t may be worth analysing the conversion rates and customer behaviour for different payment
installment options to identify any patterns or trends.

= Target in Brazil could consider offering more attractive and flexible payment installment options to
cater to customer preferences and drive higher sales.

= Target in Brazil could also consider promoting payment installment options during marketing and
promotional campaigns to encourage customers to choose these options at checkout.

=  Monitoring customer feedback and conducting surveys to understand customer preferences and
satisfaction with payment installment options can provide valuable insights for improving the
payment experience at Target in Brazil.

Recommendations for Target to optimise their marketing, localisation, delivery, and customer
engagement strategies in different regions of Brazil, leading to increased customer satisfaction,
loyalty, and business growth.
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References

BigQuery:

-- Targeting Success: A Business Case Analysis of 100k Orders
-- at Target in Brazil by Emma Luk

-- BigQuery shape table for customers table

SELECT count(distinct column_name), (select count(*) from
382621.target_business.customers’)

FROM "“target-business-case-382621.target_business.INFORMATION
WHERE table_name = 'customers';

-- BigQuery shape table for sellers table

SELECT count(distinct column_name), (select count(*) from
382621.target_business.sellers”)

FROM "“target-business-case-382621.target_business.INFORMATION
WHERE table_name = 'sellers';

-- BigQuery shape table for order_items table

SELECT count(distinct column_name), (select count(*) from
382621.target_business.order_items’)

FROM "target-business-case-382621.target_business.INFORMATION
WHERE table_name = 'order_items';

-- BigQuery shape table for geolocations table

SELECT count(distinct column_name), (select count(*) from
382621.target_business.geolocations’)

FROM "target-business-case-382621.target_business.INFORMATION
WHERE table_name = 'geolocations';

-- BigQuery shape table for payments table

SELECT count(distinct column_name), (select count(*) from
382621.target_business. payments’)

FROM "target-business-case-382621.target_business.INFORMATION
WHERE table_name = 'payments';

-- BigQuery shape table for orders table

SELECT count(distinct column_name), (select count(*) from
382621.target_business.orders”)

FROM "target-business-case-382621.target_business.INFORMATION
WHERE table_name = 'orders';

-- BigQuery shape table for reviews table

SELECT count(distinct column_name), (select count(*) from
382621.target_business.reviews")

FROM "target-business-case-382621.target_business.INFORMATION
WHERE table_name = 'reviews';

-- BigQuery shape table for products table

SELECT count(distinct column_name), (select count(*) from
382621.target_business.products”)

FROM "target-business-case-382621.target_business.INFORMATION
WHERE table_name = 'products';

-- Analyse Data Types of Columns

SELECT column_name, data_type

FROM "target-business-case-382621.target_business.INFORMATION
WHERE table_name = 'customers';

‘target-business-case-

_SCHEMA .COLUMNS"®

‘target-business-case-

_SCHEMA .COLUMNS"®

‘target-business-case-

_SCHEMA .COLUMNS"®

‘target-business-case-

_SCHEMA .COLUMNS"®

‘target-business-case-

_SCHEMA .COLUMNS"®

‘target-business-case-

_SCHEMA .COLUMNS"®

‘target-business-case-

_SCHEMA .COLUMNS"®

‘target-business-case-

_SCHEMA .COLUMNS"®

_SCHEMA .COLUMNS"
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-- Analyse Data Types of Columns

SELECT column_name, data_type

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'sellers';

-- Analyse Data Types of Columns

SELECT column_name, data_type

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'order_items';

-- Analyse Data Types of Columns

SELECT column_name, data_type

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'geolocations';

-- Analyse Data Types of Columns

SELECT column_name, data_type

FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'payments';

-- Analyse Data Types of Columns

SELECT column_name, data_type

FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'orders';

-- Analyse Data Types of Columns

SELECT column_name, data_type

FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'order_reviews';

-- Analyse Data Types of Columns

SELECT column_name, data_type

FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'products’;

-- Data type of columns in a table

-- Analyse Data Types of Columns for different tables

-- with Common Table Expression (CTE)

WITH customer_columns AS (

SELECT column_name, data_type

FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'customers'’

),

seller_columns AS (

SELECT column_name, data_type

FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'sellers’

),

order_items_columns AS (

SELECT column_name, data_type

FROM  target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®

WHERE table_name = 'order_items'

),

geolocations_columns AS (

SELECT column_name, data_type

FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'geolocations'’

),
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payments_columns AS (

SELECT column_name, data_type

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'payments'

),

orders_columns AS (

SELECT column_name, data_type

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'orders'

),

reviews_columns AS (

SELECT column_name, data_type

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'order_reviews'

),

products_columns AS (

SELECT column_name, data_type

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'products'

)

-- Analyse Data Types of Columns for different tables with Common Table Expression (CTE)
SELECT column_name, data_type FROM customer_columns

UNION ALL

SELECT column_name, data_type FROM seller_columns
UNION ALL

SELECT column_name, data_type FROM order_items_columns
UNION ALL

SELECT column_name, data_type FROM geolocations_columns
UNION ALL

SELECT column_name, data_type FROM payments_columns
UNION ALL

SELECT column_name, data_type FROM orders_columns
UNION ALL

SELECT column_name, data_type FROM reviews_columns
UNION ALL

SELECT column_name, data_type FROM products_columns;

-- Data type of columns in a table
-- Analyse Data Types of Columns for different tables
-- with Common Table Expression (CTE)

-- BigQuery shape table for customers table
WITH customer_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.customers’) AS num_rows
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'customers'
)
SELECT num_columns, num_rows
FROM customer_shape;

-- BigQuery shape table for sellers table

WITH seller_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
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(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.sellers’) AS num_rows
FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'sellers’
)
SELECT num_columns, num_rows
FROM seller_shape;

-- BigQuery shape table for order_items table
WITH order_items_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.order_items’ ) AS num_rows
FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'order_items'
)
SELECT num_columns, num_rows
FROM order_items_shape;

-- BigQuery shape table for geolocations table
WITH geolocations_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.geolocation™) AS num_rows
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'geolocation'
)
SELECT num_columns, num_rows
FROM geolocations_shape;

-- BigQuery shape table for payments table
WITH payments_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.payments”) AS num_rows
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'payments'
)
SELECT num_columns, num_rows
FROM payments_shape;

-- BigQuery shape table for orders table
WITH orders_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM “target-business-case-382621.target_business.orders”) AS num_rows
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'orders'
)
SELECT num_columns, num_rows
FROM orders_shape;

-- BigQuery shape table for reviews table
WITH reviews_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.order_reviews ) AS num_rows
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'order_reviews'
)
SELECT num_columns, num_rows
FROM reviews_shape;
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-- BigQuery shape table for products table
WITH products_shape AS (
SELECT COUNT(DISTINCT column_name) AS num_columns,
(SELECT COUNT(*) FROM "target-business-case-
382621.target_business.products’) AS num_rows

FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®

WHERE table_name = 'products'
)

SELECT num_columns, num_rows
FROM products_shape;

-- You can now use INFORMATION_SCHEMA - a series of views that provide access to metadata

--- about datasets, tables, and views

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM "“target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS®
WHERE table_name = 'customers';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'order_items';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'order_reviews';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'orders’;

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'payments';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"
WHERE table_name = 'products';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM "target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'sellers';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM "target_business.INFORMATION_SCHEMA.COLUMNS"®
WHERE table_name = 'sellers';

-- 2. Time period for which the data is given

WITH min_max_dates AS (
SELECT
MIN(order_purchase_timestamp) AS min_date,
MAX(order_purchase_timestamp) AS max_date
FROM
target_business.orders
)
SELECT
FORMAT_TIMESTAMP('%Y-%m-%d', min_date) AS min_purchase_date,
FORMAT_TIMESTAMP('%Y-%m-%d', max_date) AS max_purchase_date
FROM
min_max_dates;
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-- min_purchase_date: 2016-09-04
-- max_purchase_date: 2018-10-17

WITH orders_cte AS (
SELECT
customer_id,
customer_city,
customer_state
FROM
“target_business.customers”
WHERE
order_purchase_timestamp BETWEEN TIMESTAMP('2016-09-04') AND TIMESTAMP('2018-10-17")
)
SELECT
customer_city AS city,
customer_state AS state
FROM
orders_cte;

SELECT
o.order_purchase_timestamp AS order_purchase_timestamp,
FROM
target_business.orders o;

WITH order_dates AS (
SELECT
order_id,
customer_id,
customer_city,
customer_state,
TIMESTAMP(order_purchase_timestamp) AS purchase_timestamp
FROM
target_business.orders o
WHERE
TIMESTAMP(order_purchase_timestamp) BETWEEN TIMESTAMP('start_date') AND TIMESTAMP('end_date'’

)
),

order_items AS (
SELECT
order_id,
product_id,
seller_id,
price,
freight_value
FROM
target_business.order_items oi
)
SELECT
od.customer_city,
od.customer_state
FROM
order_dates od
JOIN
order_items oi
ON
od.order_id = oi.order_id
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JOIN
target_business.customers c

ON

c.customer_id = od.customer_id
JOIN

target_business.geolocation g
ON

c.customer_zip_code_prefix = g.geolocation_zip_code_prefix;

WITH orders_cte AS (
SELECT
order_id,
customer_id,
order_purchase_timestamp
FROM
target_business.orders
WHERE
order_purchase_timestamp >= TIMESTAMP("20616-09-04 21:15:19 UTC")
- Replace with the start date and time of the period
AND order_purchase_timestamp <= TIMESTAMP("20618-106-17 17:30:18 UTC")
- Replace with the end date and time of the period

),

customers_cte AS (
SELECT
customer_id,
customer_city,
customer_state
FROM
target_business.customers

)

SELECT
c.customer_city AS city,
c.customer_state AS state

FROM
customers_cte ¢
JOIN
orders_cte o
ON
c.customer_id = o.customer_id
ORDER BY

c.customer_state, c.customer_city;

-- Define the start and end date for the period
DECLARE @start_date DATE;

DECLARE @end_date DATE;

SET @start_date = '2016-09-04";

SET @end_date = '2018-10-17";

-- CTE to get the order IDs and customer IDs for orders placed during the given period
WITH orders_cte AS (

SELECT order_id, customer_id

FROM target_business.orders

WHERE order_purchase_timestamp BETWEEN @start_date AND @end_date

)

-- CTE to get the customer city and state information
, customer_cte AS (
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SELECT customer_id, customer_city, customer_state
FROM target_business.customers

)

-- CTE to get the geolocation city and state information

, geolocation_cte AS (
SELECT geolocation_zip_code_prefix, geolocation_city, geolocation_state
FROM target_business.geolocation

)

-- Join the order, customer, and geolocation CTEs to get the final result

SELECT o.order_id, c.customer_city, c.customer_state, g.geolocation_city, g.geolocation_state
FROM orders_cte o

LEFT JOIN customer_cte c¢ ON o.customer_id = c.customer_id

LEFT JOIN geolocation_cte g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix;

- Cities and States of customers ordered during the given period using Common Table Expression (
CTE)
WITH orders_cte AS (
SELECT DISTINCT customer_city, customer_state
FROM target_business.orders o
JOIN target_business.customers ¢ ON o.customer_id = c.customer_id
JOIN target_business.geolocation g ON c.customer_zip_code_prefix = g.geolocation_zip_code_pref
ix
WHERE o.order_purchase_timestamp BETWEEN '2016-09-04 21:15:19 UTC' AND '2018-10-
17 17:30:18 UTC'
)
SELECT customer_city, customer_state
FROM orders_cte
ORDER BY customer_state, customer_city;

SELECT city, state

FROM customer_orders

WHERE order_date BETWEEN 'start_date' AND 'end_date'’
GROUP BY city, state

ORDER BY state, city;

SELECT DISTINCT customer_city, customer_state

FROM target_business.orders o

JOIN target_business.customers ¢ ON o.customer_id = c.customer_id

-- JOIN geolocations g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix

WHERE o.order_purchase_timestamp BETWEEN '2016-09-04 21:15:19 UTC' AND '2018-10-17 17:30:18 UTC'
ORDER BY customer_state, customer_city;

SELECT DISTINCT customer_city, customer_state

FROM target_business.orders o

JOIN target_business.customers ¢ ON o.customer_id = c.customer_id

JOIN target_business.geolocation g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
WHERE o.order_purchase_timestamp BETWEEN '2016-09-04 21:15:19 UTC' AND '20818-10-17 17:30:18 UTC'
ORDER BY customer_state, customer_city;

-- 1. Is there a growing trend on e-

commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with pe
aks at specific months?
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WITH customer_locations AS (
SELECT
c.customer_unique_id,
c.customer_zip_code_prefix,
c.customer_city,
c.customer_state

FROM "target_business.customers’ c

),
seller_locations AS (
SELECT
seller_id,
seller_zip_code_prefix,
seller_city,
seller_state
FROM "“target-business-case-382621
),
order_items_info AS (
SELECT
oi.order_id,
oi.order_item_id,
oi.product_id,
oi.seller_id,
oi.price,
oi.freight_value
FROM "“target-business-case-382621
).
orders_info AS (
SELECT
o.order_id,
--c.customer_unique_id,
o.customer_id,
o.order_purchase_timestamp,
o.order_delivered_customer_date
FROM "“target-business-case-382621
),
payments_info AS (
SELECT
pa.order_id,
pa.payment_type,
pa.payment_installments,
pa.payment_value
FROM "“target-business-case-382621
),
product_info AS (
SELECT
p.product_id,
p.product_category
FROM "“target-business-case-382621
),
order_items_with_product_info AS (
SELECT
oi.order_id,
oi.order_item_id,
oi.product_id,
oi.seller_id,
oi.price,
oi.freight_value,
pi.product_category
FROM order_items_info AS oi
JOIN product_info AS pi
ON oi.product_id = pi.product_id

.target_business.sellers” s

.target_business.order_items" oi

.target_business.orders” o

.target_business.payments” pa

.target_business.products’ p
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)
orders_with_payment_info AS (
SELECT

oi.order_id,
oi.product_category,
oi.price,
oi.freight_value,
pi.payment_type,
pi.payment_installments,
pi.payment_value

FROM order_items_with_product_info AS oi

JOIN payments_info AS pi
ON oi.order_id = pi.order_id
),
orders_with_customer_info AS (
SELECT
oi.order_id,
oi.product_category,
oi.price,
oi.freight_value,
pi.payment_type,
pi.payment_installments,
pi.payment_value,
ci.customer_state,
ci.customer_city

FROM orders_with_payment_info AS oi

JOIN customer_locations AS ci

ON oi.order_id = ci.customer_unique_id

),
orders_with_seller_info AS (
SELECT
oi.order_id,
oi.product_category,
oi.price,
oi.freight_value,
pi.payment_type,
pi.payment_installments,
pi.payment_value,
oi.seller_id,
si.seller_state,
si.seller_city
FROM orders_with_customer_info AS
JOIN seller_locations AS si
ON oi.seller_id = si.seller_id
)
orders_with_dates AS (
SELECT
.order_id,
.product_category,
.price,
.freight_value,
.payment_type,
.payment_installments,
.payment_value,
.customer_state,
.customer_city,
.seller_state,
.seller_city,
.order_purchase_timestamp,
.order_delivered_customer_date,

o

O O 0O 0O 0O OO0 O0OO0OOoOOoOoOo

EXTRACT(MONTH FROM o.order_purchase_timestamp) AS

order_month
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FROM orders_with_seller_info AS o
),
monthly_orders AS (
SELECT
order_month,
COUNT(DISTINCT order_id) AS num_orders,
SUM(price) AS total_revenue,
SUM(freight_value) AS total_freight,
SUM(payment_value) AS total_payment,
COUNT(DISTINCT customer_city) AS num_cities,
COUNT(DISTINCT seller_city) AS num_seller_cities
FROM orders_with_dates
GROUP BY order_month
)
SELECT
order_month, ;

WITH customer_locations AS (
SELECT
customer_unique_id,
customer_zip_code_prefix,
customer_city,
customer_state
FROM “target_business.customers"’
).
seller_locations AS (
SELECT
seller_id,
seller_zip_code_prefix,
seller_city,
seller_state
FROM “target_business.sellers’
),
order_items_info AS (
SELECT
order_id,
order_item_id,
product_id,
seller_id,
price,
freight_value
FROM "“target_business.order_items"
),
orders_info AS (
SELECT
order_id,
--customer_unique_id,
customer_id,
order_purchase_timestamp,
order_delivered_customer_date
FROM “target_business.orders’
),
payments_info AS (
SELECT
order_id,
payment_type,
payment_installments,
payment_value
FROM “target_business.payments’
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),
product_info AS (
SELECT
product_id,
product_category
FROM “target_business.products’
),
order_items_with_product_info AS (
SELECT
oi.order_id,
oi.order_item_id,
oi.product_id,
oi.seller_id,
oi.price,
oi.freight_value,
pi.product_category
FROM order_items_info AS oi
JOIN product_info AS pi
ON oi.product_id = pi.product_id
).
orders_with_payment_info AS (
SELECT
oi.order_id,
oi.product_category,
oi.price,
oi.freight_value,
pi.payment_type,
pi.payment_installments,
pi.payment_value
FROM order_items_with_product_info AS oi
JOIN payments_info AS pi
ON oi.order_id = pi.order_id
).
orders_with_customer_info AS (
SELECT
oi.order_id,
oi.product_category,
oi.price,
oi.freight_value,
pi.payment_type,
pi.payment_installments,
pi.payment_value,
ci.customer_state,
ci.customer_city
FROM orders_with_payment_info AS oi
JOIN customer_locations AS ci
ON oi.order_id = ci.customer_unique_id
),
orders_with_seller_info AS (
SELECT
oi.order_id,
oi.product_category,
oi.price,
oi.freight_value,
pi.payment_type,
pi.payment_installments,
pi.payment_value,
oi.seller_id,
si.seller_state,
si.seller_city
FROM orders_with_customer_info AS oi
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JOIN seller_locations AS si
ON oi.seller_id = si.seller_id
),
orders_with_dates AS (
SELECT
.order_id,
.product_category,
.price,
.freight_value,
.payment_type,
.payment_installments,
.payment_value,
.customer_state,
.customer_city,
.seller_state,
.seller_city,
.order_purchase_timestamp,
.order_delivered_customer_date,
EXTRACT (MONTH FROM o.order_purchase_timestamp) AS order_month
FROM orders_with_seller_info AS o

o

O O OO O OO0 O0OO0OOoOOoOOo

).
monthly_orders AS (
SELECT
order_month,
COUNT(DISTINCT order_id) AS num_orders,
SUM(price) AS total_revenue,
SUM(freight_value) AS total_freight,
SUM(payment_value) AS total_payment,
COUNT(DISTINCT customer_city) AS num_cities,
COUNT(DISTINCT seller_city) AS num_seller_cities
FROM orders_with_dates
GROUP BY order_month
)
SELECT
order_month, ;

--UPDATE "target_business.products"”

--SET product_category_name = product_category
--WHERE TRUE;

SELECT

EXTRACT(MONTH FROM order_purchase_timestamp) AS month
FROM
“target-business-case-382621.target_business.orders”;

-- Breaking Down Brazil's E-commerce Boom:

-- Seasonal Peaks and Complete Trends

SELECT
EXTRACT(MONTH FROM order_purchase_timestamp) AS month,
COUNT(DISTINCT o.order_id) AS num_orders,
SUM(oi.price + oi.freight_value) AS revenue

FROM
“target-business-case-382621.target_business.orders’ o

JOIN “target-business-case-382621.target_business.order_items’ oi ON o.order_id = oi.order_id

JOIN “target-business-case-
382621.target_business.customers’ c¢ ON o.customer_id = c.customer_id
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JOIN “target-business-case-

382621.target_business.geolocation” g ON c.customer_zip_code_prefix = g.geolocation_zip_code_pre

fix
WHERE
g.geolocation_state = 'SP’
GROUP BY
month
ORDER BY
month ASC;

SELECT

EXTRACT (MONTH FROM order_purchase_timestamp) AS month
FROM
“target-business-case-382621.target_business.orders”;

SELECT DATE_TRUNC( 'week', order_purchase_timestamp) as week, COUNT(*) as num_orders
FROM "“target-business-case-382621.target_business.orders"”
GROUP BY week;

SELECT
DATE_TRUNC( 'month', order_purchase_timestamp) AS month
FROM
“target-business-case-382621.target_business.orders”;

SELECT
MONTH(order_purchase_timestamp) AS ProducedMonth

FROM
“target-business-case-382621.target_business.orders”;

WITH orders_and_customers AS (
SELECT
o.order_id,
o.customer_id,
c.customer_city,
c.customer_state,
TIMESTAMP_TRUNC(o.order_purchase_timestamp, HOUR) AS order_hour
FROM
‘your_project_id.orders’ AS o
JOIN
“your_project_id.customers”™ AS c
ON
o.customer_id = c.customer_id
), orders_and_customers_and_geolocation AS (
SELECT
oac.order_id,
oac.customer_id,
oac.customer_city,
oac.customer_state,
oac.order_hour,
g.geolocation_city
FROM
orders_and_customers AS oac
JOIN
‘your_project_id.geolocations® AS g
ON

66 | Page



oac.customer_zip_code_prefix = g.geolocation_zip_code_prefix
), orders_and_customers_and_geolocation_and_payments AS (

SELECT

ocg.order_id,

ocg.customer_id,

ocg.customer_city,

ocg.customer_state,

ocg.order_hour,

ocg.geolocation_city,

p.payment_installments,

TIMESTAMP_TRUNC(ocg.order_hour, DAY) AS order_day
FROM

orders_and_customers_and_geolocation AS ocg
JOIN

‘your_project_id.payments” AS p
ON

ocg.order_id = p.order_id

), orders_and_customers_and_geolocation_and_payments_and_order_items AS (

SELECT
ocgp.order_id,
ocgp.customer_id,
ocgp.customer_city,
ocgp.customer_state,
ocgp.order_hour,
ocgp.geolocation_city,
ocgp.payment_installments,
ocgp.order_day,
oi.price,
oi.freight_value

FROM
orders_and_customers_and_geolocation_and_payments AS ocgp

JOIN
‘your_project_id.order_items® AS oi

ON
ocgp.order_id = oi.order_id

)
SELECT
CASE

WHEN order_hour BETWEEN TIMESTAMP('2023-04-07 ©0:00:00', 'UTC') AND TIMESTAMP('2023-04-

07 06:00:00', 'UTC') THEN 'Dawn'

WHEN order_hour BETWEEN TIMESTAMP('2023-04-07 ©6:00:00', 'UTC') AND TIMESTAMP('2023-04-

07 12:00:00', 'UTC') THEN 'Morning'

WHEN order_hour BETWEEN TIMESTAMP('2023-04-07 12:00:00', 'UTC') AND TIMESTAMP('2023-04-

07 18:00:00', 'UTC') THEN 'Afternoon'
ELSE 'Night'
END AS time_of_day,
COUNT(DISTINCT order_id) AS num_orders,
AVG(price + freight_value) AS avg_order_amount
FROM
orders_and_customers_and_geolocation_and_payments_and_order_items
WHERE
customer_state = 'SP' -- change this to the desired state code
AND payment_installments = 1 -- only consider non-EMI purchases
GROUP BY
time_of_day
ORDER BY
time_of_day;

WITH orders_and_customers AS (
SELECT
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o.order_id,

o.customer_id,

c.customer_city,

c.customer_state,

TIMESTAMP_TRUNC(o.order_purchase_timestamp, HOUR) AS order_hour

FROM

‘your_project_id.orders’ AS o
JOIN

‘your_project_id.customers® AS c
ON

o.customer_id = c.customer_id
), orders_and_customers_and_geolocation AS (
SELECT
oac.order_id,
oac.customer_id,
oac.customer_city,
oac.customer_state,
oac.order_hour,
g.geolocation_city

FROM

orders_and_customers AS oac
JOIN

‘your_project_id.geolocations® AS g
ON

oac.customer_zip_code_prefix = g.geolocation_zip_code_prefix
), orders_and_customers_and_geolocation_and_payments AS (
SELECT
ocg.order_id,
ocg.customer_id,
ocg.customer_city,
ocg.customer_state,
ocg.order_hour,
ocg.geolocation_city,
p.payment_installments,
TIMESTAMP_TRUNC(ocg.order_hour, DAY) AS order_day
FROM
orders_and_customers_and_geolocation AS ocg
JOIN
‘your_project_id.payments” AS p
ON
ocg.order_id = p.order_id
), orders_and_customers_and_geolocation_and_payments_and_order_items AS (
SELECT
ocgp.order_id,
ocgp.customer_id,
ocgp.customer_city,
ocgp.customer_state,
ocgp.order_hour,
ocgp.geolocation_city,
ocgp.payment_installments,
ocgp.order_day,
oi.price,
oi.freight_value
FROM
orders_and_customers_and_geolocation_and_payments AS ocgp
JOIN
‘your_project_id.order_items® AS oi
ON
ocgp.order_id = oi.order_id
)
SELECT
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CASE
WHEN order_hour BETWEEN TIMESTAMP('2023-04-07 00:00:00', 'UTC') AND TIMESTAMP('2023-04-
07 06:00:00', 'UTC') THEN 'Dawn’
WHEN order_hour BETWEEN TIMESTAMP('2023-04-87 06:00:00', 'UTC') AND TIMESTAMP('2023-04-
07 12:00:00', 'UTC') THEN 'Morning'’
WHEN order_hour BETWEEN TIMESTAMP('2023-04-87 12:00:00', 'UTC') AND TIMESTAMP('2023-04-
07 18:00:00', 'UTC') THEN 'Afternoon’
ELSE 'Night'
END AS time_of_day,
COUNT(DISTINCT order_id) AS num_orders,
AVG(price + freight_value) AS avg_order_amount

FROM
orders_and_customers_and_geolocation_and_payments_and_order_items
WHERE
customer_state = 'SP' -- change this to the desired state code
AND payment_installments = 1 -- only consider non-EMI purchases
GROUP BY
time_of_day
ORDER BY
time_of_day;

-- Breaking Down Brazil's E-commerce Boom:
-- Seasonal Peaks and Complete Trends
SELECT
EXTRACT(HOUR FROM order_purchase_timestamp) AS purchase_hour,
COUNT(*) AS total_orders
FROM
“target-business-case-382621.target_business.orders’ AS o
JOIN “target-business-case-
382621.target_business.customers™ AS c ON o.customer_id = c.customer_id
WHERE
c.customer_state = 'SP’ -- Select only orders from Sao Paulo state
GROUP BY
purchase_hour
ORDER BY
purchase_hour;

-- Evolution of E-commerce orders in the Brazil region:

-- Get month on month orders by states
SELECT
EXTRACT (MONTH FROM order_purchase_timestamp) AS order_month,
-- DATE_TRUNC( 'month', o.order_purchase_timestamp) AS order_month,
c.customer_state,
COUNT(DISTINCT o.order_id) AS order_count
FROM
target_business.orders o
JOIN target_business.customers ¢ ON o.customer_id = c.customer_id
WHERE
o.order_purchase_timestamp >= '2016-09-
04 21:15:19 UTC' AND o.order_purchase_timestamp < '2018-16-17 17:30:18 UTC'
GROUP BY
order_month,
c.customer_state
ORDER BY
order_month,
c.customer_state;
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--From North to South: Exploring Customer Distribution in Brazil

SELECT c.customer_state, COUNT(c.customer_id) as customer_count

FROM target_business.customers c

JOIN target_business.geolocation g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
GROUP BY c.customer_state

ORDER BY customer_count DESC;

SELECT
ROUND( ((SUM(p2.payment_value) - SUM(p1.payment_value)) / SUM(p1.payment_value)) * 100, 2) AS
percentage_increase
FROM
target_business.payments p1
JOIN
target_business.payments p2 ON p1.order_id = p2.order_id
WHERE
DATE_TRUNC( 'month', p1.order_purchase_timestamp) >= '2017-01-01'
AND DATE_TRUNC( 'month', p1.order_purchase_timestamp) <= '2017-08-31'
AND DATE_TRUNC('month', p2.order_purchase_timestamp) >= '2018-01-01"
AND DATE_TRUNC( 'month', p2.order_purchase_timestamp) <= '2018-08-31";

-- EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month,
--DATE_TRUNC( 'month', p1.order_purchase_timestamp) >= '2017-01-01"
--AND DATE_TRUNC('month', p1.order_purchase_timestamp) <= '2017-08-31"'
--AND DATE_TRUNC('month', p2.order_purchase_timestamp) >= '2018-01-01"'
--AND DATE_TRUNC('month', p2.order_purchase_timestamp) <= '2018-08-31";

with A as

(Select extract(year from o.order_purchase_timestamp) as yr, sum(p.payment_value) as cost_of_ord
ers

from target_business.orders o join target_business.payments p

on o.order_id = p.order_id

where extract(month from o.order_purchase_timestamp) between 1 and 8

group by 1)

Select ((a2.cost_of_orders/al.cost_of_orders) - 1)*100 as perc_increase

from A as al, A as a2

where al.yr = 2017 and a2.yr = 2018;

--- From 2017 to 2018: Calculating the Percentage Increase in Order Costs
WITH A AS
(
SELECT
EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
SUM(p.payment_value) as cost_of_orders

FROM
target_business.orders o
JOIN
target_business.payments p ON o.order_id = p.order_id
WHERE
EXTRACT(month FROM o.order_purchase_timestamp) BETWEEN 1 AND 8
GROUP BY
1
)
SELECT

ROUND( ((a2.cost_of_orders / al.cost_of_orders) - 1) * 160, 2) as perc_increase
FROM
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A as al, A as a2
WHERE
al.year = 2017 AND a2.year = 2018;

with A AS

(SELECT
EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
SUM(p.payment_value) as cost_of_orders

FROM
target_business.orders o
JOIN
target_business.payments p ON o.order_id = p.order_id
WHERE
EXTRACT (month FROM o.order_purchase_timestamp) between 1 and 8
GROUP BY
1)
SELECT
((a2.cost_of_orders/al.cost_of_orders) - 1)*100 as perc_increase
FROM

A as al, A as a2
WHERE al.year = 2017 and a2.year = 2018;

-- State-wise E-commerce Insights: Mean and Sum of Price and Freight Values
-- Common Table Expression (CTE) to retrieve order items data
WITH order_items_cte AS (
SELECT order_id, price, freight_value
FROM target_business.order_items
), customers_cte AS (
SELECT customer_id, customer_state
FROM target_business.customers c
), combined_data AS (
SELECT c.customer_state, oi.price, oi.freight_value
FROM order_items_cte oi
INNER JOIN target_business.orders o ON oi.order_id = o.order_id
INNER JOIN customers_cte ¢ ON o.customer_id = c.customer_id
)
SELECT customer_state, AVG(price) AS mean_price, SUM(price) AS sum_price, AVG(freight_value) AS
mean_freight_value, SUM(freight_value) AS sum_freight_value
FROM combined_data
GROUP BY customer_state;
--SELECT * from order_items_cte

-- State-wise E-commerce Insights: Mean and Sum of Price and Freight Values
-- Common Table Expression (CTE) to retrieve order items data
WITH order_items_cte AS (

SELECT order_id, price, freight_value

FROM target_business.order_items

),

-- Common Table Expression (CTE) to retrieve customers data
customers_cte AS (

SELECT customer_id, customer_state

FROM target_business.customers c

),

-- Common Table Expression (CTE) to combine data from order_items_cte, orders, and customers_cte
combined_data AS (

SELECT c.customer_state, oi.price, oi.freight_value

FROM order_items_cte oi

INNER JOIN target_business.orders o ON oi.order_id = o.order_id
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INNER JOIN customers_cte ¢ ON o.customer_id = c.customer_id

)

-- Main query to calculate mean and sum for each customer state
SELECT customer_state,
AVG(price) AS mean_price,
SUM(price) AS sum_price,
AVG(freight_value) AS mean_freight_value,
SUM(freight_value) AS sum_freight_value
FROM combined_data
GROUP BY customer_state;
--Analysis on sales, freight and delivery time
--Calculate days between purchasing, delivering and estimated delivery
WITH order_info AS (
SELECT
o.order_id,
o.order_purchase_timestamp,
o.order_delivered_carrier_date,
o.order_delivered_customer_date,
o.order_estimated_delivery_date
FROM
target_business.orders o

)
, order_delays AS (
SELECT
order_id,
DATE_DIFF(order_delivered_carrier_date, order_purchase_timestamp, DAY) AS carrier_delay,
DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS customer_delay,
DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY) AS estimated_deliver
y_delay
FROM
order_info
)
SELECT

order_id,

carrier_delay,

customer_delay,

estimated_delivery_delay
FROM

order_delays;

-- 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
-- o time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
-- o diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

WITH order_data AS (
SELECT
order_id,
order_purchase_timestamp,
order_delivered_customer_date,
order_estimated_delivery_date
FROM
“target_business.orders’
)
SELECT
order_id,
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TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, HOUR) AS time_to_deliv
ery,

TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, HOUR) AS diff_est
imated_delivery
FROM

order_data;

-- Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
WITH order_stats AS (
SELECT
c.customer_state AS state,
AVG(oi.freight_value) AS avg_freight_value,
AVG(date_diff( o.order_delivered_customer_date, o.order_purchase_timestamp, day)) AS avg_tim
e_to_delivery,
AVG(date_diff(o.order_estimated_delivery_date, o.order_delivered_customer_date, day)) AS avg
_diff_estimated_delivery
FROM
target_business.customers c
JOIN
target_business.orders o ON c.customer_id = o.customer_id
JOIN
target_business.order_items oi ON o.order_id = oi.order_id
GROUP BY
state
)
SELECT
state,
avg_freight_value,
avg_time_to_delivery,
avg_diff_estimated_delivery
FROM
order_stats
ORDER BY
state;

-- 5. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5
WITH state_freight_avg AS (
SELECT
c.customer_state AS state,
AVG(oi.freight_value) AS avg_freight
FROM
target_business.customers c
JOIN
target_business.orders o ON c.customer_id = o.customer_id
JOIN
target_business.order_items oi ON o.order_id = oi.order_id
GROUP BY
c.customer_state
)
SELECT
state,
avg_freight
FROM (
SELECT
state,
avg_freight,
ROW_NUMBER() OVER (ORDER BY avg_freight DESC) AS rn_desc,
ROW_NUMBER() OVER (ORDER BY avg_freight ASC) AS rn_asc
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FROM
state_freight_avg
)
WHERE
rn_desc <= 5 OR rn_asc <= 5
ORDER BY
avg_freight DESC, state ASC;
-- 5. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5
WITH freight_avg_by_state AS (
SELECT
c.customer_state AS state,
AVG(oi.freight_value) AS avg_freight
FROM
target_business.customers c
INNER JOIN
target_business.orders o ON c.customer_id = o.customer_id
INNER JOIN
target_business.order_items oi ON o.order_id = oi.order_id
GROUP BY
state
)
SELECT
state,
avg_freight
FROM
freight_avg_by_state
ORDER BY
avg_freight DESC
LIMIT
5; -- Top 5 states with highest average freight value

WITH freight_avg_by_state AS (
SELECT
c.customer_state AS state,
AVG(oi.freight_value) AS avg_freight
FROM
target_business.customers ¢
INNER JOIN
target_business.orders o ON c.customer_id = o.customer_id
INNER JOIN
target_business.order_items oi ON o.order_id = oi.order_id
GROUP BY
state
)
SELECT
state,
avg_freight
FROM
freight_avg_by_state
ORDER BY
avg_freight ASC
LIMIT
5; -- Top 5 states with lowest average freight value

WITH avg_freight AS (
SELECT
c.customer_state AS state,
AVG(oi.freight_value) AS avg_freight
FROM
“target_business.customers” c

74| Page



JOIN
“target_business.orders’ o ON c.customer_id = o.customer_id
JOIN
“target_business.order_items’ oi ON o.order_id = oi.order_id
GROUP BY
state
)
SELECT
state,
avg_freight
FROM
avg_freight
ORDER BY
avg_freight DESC
LIMIT
5

-- The above query finds the top 5 states with the highest average freight value
UNION ALL

SELECT
state,
avg_freight
FROM (
SELECT
state,
avg_freight
FROM
avg_freight
ORDER BY
avg_freight ASC
LIMIT
5
)
ORDER BY
avg_freight ASC;

-- The above query finds the bottom 5 states with the lowest average freight value
-- 7. Top 5 states with highest/lowest average time to delivery
WITH order_delivery_time AS (
SELECT
c.customer_state AS state,
TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS delivery
_time
FROM
target_business.orders o
JOIN
target_business.customers ¢ ON o.customer_id = c.customer_id

, avg_delivery_time AS (
SELECT
state,
AVG(delivery_time) AS avg_time
FROM
order_delivery_time
GROUP BY
state

)
SELECT
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state,
avg_time
FROM (
SELECT
state,
avg_time,
ROW_NUMBER() OVER (ORDER BY avg_time DESC) AS rank_desc,
ROW_NUMBER() OVER (ORDER BY avg_time ASC) AS rank_asc
FROM
avg_delivery_time

)
WHERE

rank_desc <= 5 OR rank_asc <= 5
ORDER BY

rank_desc ASC,
rank_asc ASC;

-- Top 5 states where delivery is really fast/ not so fast compared to estimated date

WITH order_delivery AS (

SELECT

o.order_id,

.order_status,
.order_purchase_timestamp,
.order_delivered_carrier_date,
.order_delivered_customer_date,
.order_estimated_delivery_date,
c.customer_state AS state

O O 0O 0 ©o

FROM
target_business.orders o
JOIN
target_business.customers c
ON
o.customer_id = c.customer_id
)
SELECT
state AS state,
COUNT(*) AS total_orders,
SUM(CASE
WHEN order_status = 'delivered' AND order_delivered_customer_date <= order_estimated_deliv
ery_date THEN 1
ELSE ©
END) AS fast_deliveries,
SUM(CASE
WHEN order_status = 'delivered' AND order_delivered_customer_date > order_estimated_delive
ry_date THEN 1
ELSE ©
END) AS delayed_deliveries
FROM
order_delivery
GROUP BY
state
ORDER BY
fast_deliveries DESC
LIMIT
3;

-- Month over Month count of orders for different payment types
WITH monthly_orders AS (
SELECT
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DATE_TRUNC(DATE (order_purchase_timestamp), MONTH) AS month,
p.payment_type,
COUNT(DISTINCT o.order_id) AS order_count
FROM
target_business.orders o
INNER JOIN
target_business.payments p ON o.order_id = p.order_id
GROUP BY
month,
payment_type
)
SELECT
month,
payment_type,
SUM(order_count) AS total_orders
FROM
monthly_orders
GROUP BY
month,
payment_type
ORDER BY
month,
payment_type;

-- Count of orders based on the no. of payment instalments
WITH order_payments AS (
SELECT
o.order_id,
p.payment_installments
FROM
target_business.orders o
JOIN
target_business.payments p ON o.order_id = p.order_id
)
SELECT
payment_installments,
COUNT(DISTINCT order_id) AS order_count
FROM
order_payments
GROUP BY
payment_installments;

WITH order_delivery_time AS (
SELECT
c.customer_state AS state,
o.order_delivered_customer_date AS delivered_date,
o.order_purchase_timestamp AS purchase_date
FROM
target_business.orders o
JOIN
target_business.customers ¢ ON o.customer_id = c.customer_id
)
, delivery_time AS (
SELECT
state,

TIMESTAMP_DIFF(delivered_date, purchase_date, DAY) AS delivery_days

FROM
order_delivery_time
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, avg_delivery_time AS (
SELECT
state,

AVG(delivery_days) AS avg_delivery_time

FROM
delivery_time
GROUP BY
state

, top_states AS (
SELECT
state,
avg_delivery_time,

RANK() OVER (ORDER BY avg_delivery_time DESC) AS rank_high,
RANK() OVER (ORDER BY avg_delivery_time ASC) AS rank_low

FROM
avg_delivery_time
)
SELECT
state,
avg_delivery_time
FROM
top_states
WHERE
rank_high <= 5
ORDER BY
avg_delivery_time DESC;

WITH order_delivery AS (
SELECT
o.order_id,
o.customer_state,
o.order_purchase_timestamp,
o.order_delivered_customer_date,

TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, HOUR) AS deliver

y_time
FROM
“target_business.orders’ o
)
SELECT
customer_state AS state,
AVG(delivery_time) AS avg_delivery_time
FROM
order_delivery
GROUP BY
customer_state
ORDER BY
avg_delivery_time DESC
LIMIT

5 -- Top 5 states with highest average time to delivery

WITH orders_info AS (
SELECT
o.order_id,
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o.customer_state,
o.order_purchase_timestamp,
o.order_delivered_customer_date,
TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, HOUR) AS time_to
_delivery
FROM
‘your_dataset.orders’ o
)
SELECT
state,
AVG(time_to_delivery) AS avg_time_to_delivery
FROM
orders_info
GROUP BY
state
ORDER BY
avg_time_to_delivery DESC
LIMIT 5 -- Top 5 states with highest average time to delivery

SELECT customer_state, AVG(freight_value) AS avg_freight_value
FROM target_business.orders

GROUP BY customer_state

ORDER BY avg_freight_value DESC

LIMIT 5;

SELECT customer_state, AVG(freight_value) AS avg_freight_value
FROM target_business.orders

GROUP BY customer_state

ORDER BY avg_freight_value ASC

LIMIT 5;

SELECT
c.customer_state AS state,
FROM
target_business.customers c;

WITH order_data AS (
SELECT
order_id,
order_purchase_timestamp,
order_delivered_customer_date,
order_estimated_delivery_date
FROM
“target_business.orders’ -- Replace with your actual project and dataset name
)
SELECT
order_id,
TIMESTAMP_DIFF (order_delivered_customer_date, order_purchase_timestamp, HOUR) AS time_to_deliv
ery,
TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, HOUR) AS diff_est
imated_delivery
FROM
order_data;
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WITH order_data AS (
SELECT

o.order_id,
o.order_purchase_timestamp,
o.order_delivered_customer_date,
o.order_estimated_delivery_date,
o.customer_state,
oi.freight_value,

TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, HOUR) AS time_to

_delivery,

TIMESTAMP_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, HOUR) AS di

ff_estimated_delivery
FROM
‘target_business.orders’ AS o
JOIN
“target_business.order_items® AS oi
ON
o.order_id = oi.order_id
)
SELECT
customer_state,
AVG(freight_value) AS avg_freight_value,
AVG(time_to_delivery) AS avg_time_to_delivery,

AVG(diff_estimated_delivery) AS avg_diff_estimated_delivery

FROM
order_data
GROUP BY
customer_state;

WITH order_stats AS (
SELECT
--o0.customer_state AS state,
AVG(oi.freight_value) AS avg_freight_value,

AVG(DATEDIFF(o.order_delivered_customer_date, o.order_purchase_timestamp)) AS avg_time_to_de

livery,

AVG(DATEDIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date)) AS avg_diff_

estimated_delivery
FROM
target_business.orders o
JOIN

target_business.order_items oi ON o.order_id = oi.order_id

GROUP BY
state
)
SELECT
state,
avg_freight_value,
avg_time_to_delivery,
avg_diff_estimated_delivery
FROM
target_business.order_stats
ORDER BY
state;

WITH order_stats AS (
SELECT
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c.customer_state AS state,
AVG(oi.freight_value) AS avg_freight_value,
AVG(DATEDIFF(o.order_delivered_customer_date, o.order_purchase_timestamp)) AS avg_time_to_de
livery,
AVG(DATEDIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date)) AS avg_diff_
estimated_delivery
FROM
target_business.customers c
JOIN
target_business.orders o ON c.customer_id = o.customer_id
JOIN
target_business.order_items oi ON o.order_id = oi.order_id
GROUP BY
state
)
SELECT
state,
avg_freight_value,
avg_time_to_delivery,
avg_diff_estimated_delivery
FROM
order_stats
ORDER BY
state;

WITH order_stats AS (
SELECT
c.customer_state AS state,
AVG(oi.freight_value) AS avg_freight_value,
AVG(date_diff('day', o.order_purchase_timestamp, o.order_delivered_customer_date)) AS avg_ti
me_to_delivery,
AVG(date_diff('day', o.order_delivered_customer_date, o.order_estimated_delivery_date)) AS a
vg_diff_estimated_delivery
FROM
target_business.customers c
JOIN
target_business.orders o ON c.customer_id = o.customer_id
JOIN
target_business.order_items oi ON o.order_id = oi.order_id
GROUP BY
state
)
SELECT
state,
avg_freight_value,
avg_time_to_delivery,
avg_diff_estimated_delivery
FROM
order_stats
ORDER BY
state;

WITH order_delivery AS (
SELECT
o.order_id,
o.order_purchase_timestamp,
o.order_delivered_carrier_date,
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o.order_delivered_customer_date,
o.order_estimated_delivery_date

FROM
ta

)
SELECT
orde
orde
orde
orde
orde

rget_business.orders o

r_id,
r_purchase_timestamp,
r_delivered_carrier_date,
r_delivered_customer_date,
r_estimated_delivery_date,

DATE_PART('day', order_delivered_carrier_date::timestamp - order_purchase_timestamp::timestamp

) AS days_between_purchasing_and_delivering,

DATE_PART('day', order_delivered_customer_date::timestamp - order_purchase_timestamp::timestam

p) AS days_between_purchasing_and_delivered,

DATE_PART('day', order_estimated_delivery_date::timestamp - order_purchase_timestamp::timestam

p) AS days_between_purchasing_and_estimated_delivery

FROM
orde

--end-
WITH o
SELE

o

o

o
o
FROM
ta

)
SELECT
orde
orde
orde
orde
orde

r_delivery;

rder_delivery AS (
CT
.order_id,

.order_purchase_timestamp,
.order_delivered_carrier_date,
.order_delivered_customer_date,
.order_estimated_delivery_date

rget_business.orders o

r_id,
r_purchase_timestamp,
r_delivered_carrier_date,
r_delivered_customer_date,
r_estimated_delivery_date,

DATE_PART('day', order_delivered_carrier_date::date - order_purchase_timestamp::date) AS days_

betwee

n_purchasing_and_delivering,

DATE_PART('day', order_delivered_customer_date::date - order_purchase_timestamp::date) AS days

_betwe

en_purchasing_and_delivered,

DATE_PART('day', order_estimated_delivery_date::date - order_purchase_timestamp::date) AS days

_betwe

FROM
orde

WITH o
SELE

FROM
ta

en_purchasing_and_estimated_delivery
r_delivery;

rder_delivery AS (
CT

.order_id,
.order_purchase_timestamp,
.order_delivered_carrier_date,
.order_delivered_customer_date,
.order_estimated_delivery_date

rget_business.orders o
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)
SELECT

order_id,
order_purchase_timestamp,
order_delivered_carrier_date,
order_delivered_customer_date,
order_estimated_delivery_date,
EXTRACT(EPOCH FROM (order_delivered_carrier_date - order_purchase_timestamp)) / 86400 AS days_
between_purchasing_and_delivering,
EXTRACT(EPOCH FROM (order_delivered_customer_date - order_purchase_timestamp)) / 86400 AS days
_between_purchasing_and_delivered,
EXTRACT(EPOCH FROM (order_estimated_delivery_date - order_purchase_timestamp)) / 86400 AS days
_between_purchasing_and_estimated_delivery
FROM
order_delivery;
WITH order_delivery AS (
SELECT
o.order_id,
o.order_purchase_timestamp,
o.order_delivered_carrier_date,
o.order_delivered_customer_date,
o.order_estimated_delivery_date
FROM
target_business.orders o
)
SELECT
order_id,
order_purchase_timestamp,
order_delivered_carrier_date,
order_delivered_customer_date,
order_estimated_delivery_date,
DATE_PART('day', order_delivered_carrier_date - order_purchase_timestamp) AS days_between_purc
hasing_and_delivering,
DATE_PART('day', order_delivered_customer_date - order_purchase_timestamp) AS days_between_pur
chasing_and_delivered,
DATE_PART('day', order_estimated_delivery_date - order_purchase_timestamp) AS days_between_pur
chasing_and_estimated_delivery
FROM
order_delivery;
WITH order_delivery AS (
SELECT
o.order_id,
o.order_purchase_timestamp,
o.order_delivered_carrier_date,
o.order_delivered_customer_date,
o.order_estimated_delivery_date
FROM
target_business.orders o
)
SELECT
order_id,
order_purchase_timestamp,
order_delivered_carrier_date,
order_delivered_customer_date,
order_estimated_delivery_date,
(order_delivered_carrier_date::date - order_purchase_timestamp::date) AS days_between_purchasi
ng_and_delivering,
(order_delivered_customer_date::date - order_purchase_timestamp::date) AS days_between_purchas
ing_and_delivered,
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(order_estimated_delivery_date::date - order_purchase_timestamp::date) AS days_between_purchas
ing_and_estimated_delivery
FROM

order_delivery;

WITH order_delivery AS (
SELECT
o.order_id,
o.order_purchase_timestamp,
o.order_delivered_carrier_date,
o.order_delivered_customer_date,
o.order_estimated_delivery_date
FROM
target_business.orders o
)
SELECT
order_id,
order_purchase_timestamp,
order_delivered_carrier_date,
order_delivered_customer_date,
order_estimated_delivery_date,
DATE_PART('day', order_delivered_carrier_date - order_purchase_timestamp) AS days_between_purc
hasing_and_delivering,
DATE_PART('day', order_delivered_customer_date - order_purchase_timestamp) AS days_between_pur
chasing_and_delivered,
DATE_PART('day', order_estimated_delivery_date - order_purchase_timestamp) AS days_between_pur
chasing_and_estimated_delivery
FROM
order_delivery;

-- end
-- not working
SELECT
EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
SUM(p.payment_value) AS total_payment_value_2017,
SUM(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018 THEN p.payment_value ELSE
0 END) AS total_payment_value_2018,
((SUM(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018 THEN p.payment_value EL
SE © END) - SUM(p.payment_value)) / SUM(p.payment_value)) * 100 AS percentage_increase
FROM
target_business.orders o
JOIN
target_business.payments p ON o.order_id = p.order_id
WHERE
EXTRACT(YEAR FROM o.order_purchase_timestamp) IN (2017, 2018)
AND EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND 8
GROUP BY
EXTRACT(YEAR FROM o.order_purchase_timestamp),
EXTRACT(MONTH FROM o.order_purchase_timestamp)
ORDER BY
EXTRACT(YEAR FROM o.order_purchase_timestamp),
EXTRACT(MONTH FROM o.order_purchase_timestamp);

SELECT
EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year_2017,
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EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year_2018,
ROUND( ((SUM(p1.payment_value) - SUM(p1.payment_value)) / SUM(p1.payment_value)) * 100, 2) AS
percentage_increase
FROM
-- target_business.payments p1
target_business.orders o
JOIN
target_business.payments p1 ON p1.order_id = ol1.order_id
WHERE
EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2017
AND EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018
AND EXTRACT(MONTH FROM p1.order_purchase_timestamp) BETWEEN 1 AND 8
AND EXTRACT(MONTH FROM p2.order_purchase_timestamp) BETWEEN 1 AND 8
GROUP BY
EXTRACT(YEAR FROM o1.order_purchase_timestamp),
EXTRACT (YEAR FROM 02.order_purchase_timestamp);

- This query joins the "payments" table with itself based on the "order_id" column, and filters

the results to include only orders made between January to August in both 2017 and 2018. It then
- calculates the percentage increase in the total payment value for these orders, comparing the

sum of "payment_value" for 2018 with that of 2017, and rounds the result to two decimal places.

The final result is grouped by the year of purchase for both 2017 and 2018.

SELECT
review_score,
review_comment_title

FROM
target_business.order_reviews
ORDER BY
review_score DESC;

- with an additional import statement for WordCloud from the wordcloud library. The WordCloud cl
ass is used for generating word clouds, which are visual representations of text data where the
size of each word represents its frequency or importance in the text.

SELECT
review_comment_title
FROM
target_business.order_reviews
ORDER BY

review_comment_title DESC;

WITH review_orders AS (

SELECT
r.review_id,
r.order_id,

r.review_score,
r.review_comment_title,
--r.review_comment_message,
r.review_creation_date,
r.review_answer_timestamp,
o.customer_id,

o.order_status,
o.order_purchase_timestamp,
o.order_delivered_carrier_date,
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o.order_delivered_customer_date,
o.order_estimated_delivery_date

FROM

target_business.order_reviews AS r
JOIN

target_business.orders AS o
ON

r.order_id = o.order_id
)
SELECT
ro.review_id,
ro.order_id,
ro.review_score,
ro.review_comment_title,
--ro.review_comment_message,
ro.review_creation_date,
ro.review_answer_timestamp,
ro.customer_id,
ro.order_status,
ro.order_purchase_timestamp,
ro.order_delivered_carrier_date,
ro.order_delivered_customer_date,
ro.order_estimated_delivery_date
FROM
review_orders AS ro;
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Notebook:

In [1]:

In [2]:

In [3]:

In [4]:

Qut[4]:

Targeting Success: A Business Case Analysis of 100k Orders at Target in Brazil

by Emma Luk

6 # visual representations of text data

df = pd.read_csv('review comment title.csv')

1 #present a DataFrame object in Python

# imports the necessary libraries for data analysis and visualisation in Python

pd.set_option('display.max_columns', 58@)
#pd.set option('max columns', 26@)

2 impert pandas as pd

3 import numpy as np

4 import matplotlib.pylab as plt
import seaborn as sns

7 from wordcloud impert WordCloud
plt.style.use('ggplot')

1 # loading dataset

1 impert pandas as pd

2
df

review_comment _title

0 (10

1 ]

2 Lo _

3 ]

4 i)
11544 =
11545 *=*
11546 i
11547 =
11548 *

11549 rows x 1 columns
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In [8]:

Qut[8]:

1 # describe
2 df.describe()

In [6]:

Qut[6]:

In [7]:

Qut[7]:

review_comment_title
count 11549
unique 3365
top | recommend
freq 1063
1 # Dataframe shape
2 df.shape
(11549, 1)
1 # dtypes
2 df.dtypes
review_comment_title object

dtype: object

In [9]:

In [12]:

Out[12]:

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11549 entries, @ to 11548
Data columns (total 1 columns):

# Column Non-Null Count

%] review_comment_title 11549 non-null

dtypes: object(1)
memory usage: 9@.4+ KB

1 df.describe()

review_score

count 29876.000000

mean

In [11]:

Out[11]:

e
1
2
3
a

std
min
26%
50%
75%

2.368155
1.214166
1.000000
1.000000
3.000000
3.000000
4.000000

1 df['review_comment_title']

11544
11545
11546
11547
11548

Mame: review_comment_title, Length: 11549, dtype: object

)
Hee _

)

%)

object
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In [12]:

Out[12]:

1 df['review_comment_title'].hist(bins = 3@, figsize = (13,5), color =

<AxesSubplot:>

C:\Users\emma_\anaconda3\1lib\site-packages\IPython\core'\pylabtools
rom current font.

fig.canvas.print_figure(bytes_io, **kw)
C:\Users\emma_\anaconda3\lib\site-packages\IPython\core'\pylabtools
ng from current font.

fig.canvas.print_figure(bytes_io, **kw)
C:\Users\emma_\anaconda3\1lib\site-packages\IPython\core'pylabtools
RICK TYPE-3}) missing from current font.

fig.canvas.print figure(bytes io, **kw)
C:\Users\emma_\anaconda3\1lib\site-packages\IPython\core'\pylabtools
missing from current font.

fig.canvas.print_figure(bytes_io, **kw)
C:\Users\emma_\anaconda3\lib\site-packages\IPython\core'pylabtools
RICK TYPE-1-2}) missing from current font.

fig.canvas.print_figure(bytes_io, *¥*kw)
C:\Users\emma_\anaconda3\lib\site-packages\IPython\core'pylabtools
sing from current font.

fig.canvas.print_figure(bytes_io, *¥*kw)
C:\Users\emma_\anaconda3\lib\site-packages\IPython\core'\pylabtools
ng from current font.

fig.canvas.print_figure(bytes_io, *¥kw)
C:\Users\emma_\anaconda3\lib\site-packages\IPython\core'\pylabtools
from current font.

fig.canvas.print_figure(bytes_io, **kw)

1200

.py:

-py:

-py:

.py:

-py:

.py:

-py

-py:

151:

151:

151:

151:

151:

151:

zilzile

151:

ety

UserWarning:

UserWarning:

UserWarning:

UserWarning:

UserWarning:

UserWarning:

UserWarning:

UserWarning:

Glyph

Glyph

Glyph

Glyph

Glyph

Glyph

Glyph

Glyph

128287

128077

127996

128079

127995

128078

128666

127775

(\N{KEYCAP TEN}) missing f

(\N{THUMBS UP SIGN}) missi

(\N{EMOJI MODIFIER FITZPAT

(\N{CLAPPING HANDS SIGN})

(\N{EMOJI MODIFIER FITZPAT

(\N{THUMBS DOWN SIGN}) mis

(\N{DELIVERY TRUCK}) missi

(\N{GLOWING STAR}) missing
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In [13]: 1 df['review_comment_title"]

Out[13]: @
1 )
2 Hee _
3 )
4 b
11544 %
11545 #%
11546 x5
11547 x5
11548 %

Mame: review_comment_title, Length: 11549, dtype: object

In [14]: 1  sns.heatmap({df.isnull(), yticklabels = False, cbar = False, cmap="Blues")

Out[14]: <AxesSubplot:>

review_comment_title

In [16]: 1 df['length'] = df['review comment title'].apply(len)

2 df.head()
Out[16]: review_comment title length
0 o 1
1 A 2
2 Hee 2
3 & 1
4 a1

90| Page



In [17]: 1 df['length'].plot(bins=18@, kind='hist")

Out[17]: <AxesSubplot:ylabel='Frequency'>

[chal
1400 - G
1200 -
1000 -
=
g
S 800 -
=
g
2 e00-
400 -
CAEETHER ER .. .
0 5 10 15 220 2% 30 3 40

In [18]: 1 df.length.describe()

Out[18]: count 11549. 000000

mean 11.825613
std 6.866476
min 1.000000
25% ©6.000000
5% 11.000000
75% 16.000000
max 40.000000

Name: length, dtype: floated

In [22]: 1 # Let's see the logest message

2 df[df['length'] == .000880][ 'review_comment_title'].iloc[@]
Out[22]: 'Pds-sales leaves something to be desired’
In [21]: 1 # Let's see the shortest message

2 df[df['length'] == 1.800000][ 'review_comment_title'].iloc[@]
Out[21]: 'E4'
In [24]: 1 # Let's see the message with mean Length

2 df[df['length'] == 11.000000][ 'review_comment_title'].iloc[@]
Out[24]: 'dim Quality’
In [25]: 1 sentences = df['review_comment_title'].tolist()

2 len(sentences)

Out[25]: 11549
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In [26]: print(sentences)

e, b, Hee ', D, D, D, e Y99 Y €9’ ¥ 09 ¥ €€ ¥', 'otimos products’, '6imo’, 'oimo’, 'oim
o', 'oimo', 'oOimo', 'Gimec', 'Gime', 'oOimo', 'oimo', 'Oimc', '6imo', 'Oimo', 'oOimo', 'oimo', 'Oimo', 'Gimo', 'éime’, 'dimo’,
"6imo', '6imec’, ‘6imo", '6imo’, 'Gimo’, 'oimc’, 'Simo’, 'Simo’', 'éime’, 'éimeo’, 'dimo’, 'éimo’, '6imo’, ‘éimo’, 'oimo’, 'éim
o', 'oimo', '6imo', 'dimo', 'éimo’, 'Gimo’, 'Simo’, '6imA ', '&im purchase', '6im I recommend', '6im', '6im', '6im', 'oim’,
"6im", "éim', 'éim', 'éim', 'éim’', '6im', 'Sim', 'Sim', 'Sim', 'Gim', 'éim’', 'Séim', '"éim', 'éim', 'Gim', 'éim’, 'Sim', 'Sim’,
'éim', 'Sim', 'Sim', 'Sim', 'éim', 'dimates supplier', 'dim Quality', 'dim', 'Uirs purchase', 'Omega 3', 'O8EItima I love
d??', 'Otimos products', 'Gtimos product and seller', 'Otimos', 'Gtimo products @', 'Otimo product’, 'Otimo ', 'Eximo su
per recommended', 'Avis super recommend', 'Avis place to buy', 'Avis', 'Aitime acquires', 'Aig and super fast', 'Aig and quic
kly enters', 'A0', 'A0', 'AIth?', 'AIth seller', 'AIth seller', 'AIth quality', 'AIth quality', 'AIth quality', 'AIth qualit
y', "BIth purchase', 'AIth purchase', 'AIth purchase', 'AIth purchase', 'AIth purchase', 'AIth product', 'AIth product', 'AIt
h product', 'AIth product', 'AIth product', 'AIth product’, 'AIth product', "AIth product', 'Alth product', 'AIth product’,
'EIth place to buy', 'BIth partner', 'AIth negate negotiation', "AIth Store I RECOMMEND', 'AIth Store ', 'Alth Store ', 'Alth
Store', 'AIth Store', 'AIth Store', 'AIth Store', "AIth Store', "AIth Store', 'AIth Store', 'Alth Store', 'Alth Store', 'Alth
Store', 'AIth Store', 'AIth Store', 'AIth Store', 'AIth Store', "AIth Store', 'AIth Store', 'Alth Store', 'Alth Shop for Purc
hases', 'AIth Purchase and Delivery PE', 'AIth Purchase', 'AIth Purchase', 'AIth Purchase', 'Alth Purchase', 'Alth Purchase’,
'AIth Purchase', 'AIth Purchase', 'AIth Purchase', 'AIth Purchase', 'AIth Purchase', 'AIth Purchase', 'AIth Purchase', 'Alth
Product and Serwvant', 'ATth Product T recommend', "ATth Product T recommend', 'ATth OPPO', 'ATth OPPO', 'ATth T liked it very
good', 'ABTth T liked it', 'ATth Delivery and Product P', 'ATth Delivery', 'ATth Delivery', 'ATth Delivery', 'ATth Cost Benefl

\xad CT0', 'ATth Cost Benefl \xad CT0', 'ATth Company', 'ATth Company', 'ATth Company', 'ATth Company', 'ATth AMET NOTE 1

~ PEwar o PETer o I PReer o PR PEwea PEraaa PR PReen R ] PR PEwera PEraa PR

In [27]: sentences_as_one_string =" ".join(sentences)

In [28]: sentences_as_one_string

out[28]: " & A0 _ A D D €09 L 99 L 9O L €€ Y €€ ¥ otimos products Gime 6imo Gimo Gimo 6imo Gimo Gimo Gimo Gimo
6imo oimo oimo Sime Oimo oimo 6imo oimo Oimo oimo Oime Oimo Oimo éimo Oimo oimo Oimo Oimo Oimo oimo 6imo oimo Oimo 6ime Gimo
6imo oimo 6imo Simo Oimo 6imo G6imA  oim purchase 6im I recommend 6im Sim Sim 6im 6im 6im 6im 6im G6im 6im 6im 6im 6im 6im Gim
Sim &im Sim Sim Sim S6im 6im &im &im Sim 6im 6im dimates supplier dim Quality &im Uirs purchase Omega 3 G6ETtima T lowed?? Oti
mos products Otimos product and seller Otimos Otimo products @ ¢4 Otimo product Otimo Eximo super recommended Avis super r
ecommend Avis place to buy Avis Aitime acquires Aig and super fast Aig and quickly enters A0 A0 ATth? ATth seller AIth seller
AIth gquality AIth quality AIth quality AIth quality AIth purchase AIth purchase AIth purchase AIth purchase AIth purchase AIt
h product AIth product AIth product AIth product AIth product AIth product AIth product AIth product AIth product AIth produc
t AIth place to buy AIth partner AIth negate negotiation AIth Store I RECOMMEND AIth Store AIth Store AIth Store AIth Store
AIth Store AIth Store AIth Store AIth Store AIth Store AIth Store AIth Store AIth Store AIth Store AIth Store AIth Store AIth
Store AIth Store AIth Store AIth Store AIth Shop for Purchases ATth Purchase and Delivery PE Alth Purchase Alth Purchase AIth
Purchase AIth Purchase AIth Purchase AIth Purchase AIth Purchase AIth Purchase AIth Purchase AIth Purchase AIth Purchase AIth
Purchase AIth Product and Servant ATth Product I recommend AIth Product I recommend AIth OPPO AIth OPPO ATth I liked it very
good ATth I liked it AIth Delivery and Product P AIth Delivery AIth Delivery AIth Delivery AIth Cost BenefA \xad CIO AIth Cos
t BenefA \xad CIO AIth Company AIth Company AIth Company AIth Company AIth AMEI NOTE 1@ Arth Arth ATth ATth ATth AIth A
Ith AIth AIth AIth AIth AIth AIth ATth AIth AIth AIth AIth AIth AIth AIth AIth AIth AIth AIth AIth ATth AIth AIth AIth AIth A
Ith AIth AIth AIth ATth AIth AIth AInda website AInda AInda AInda AInda AlInda AlInda AIn very good indeed AIn product
AIn product AIn product ATn product ATn product AIn product ATn product ATn product ATn product ATn product AIn product AIn p
roduct AIn product AIn product AIn product AIn product AIn product AIn product AIn product AIn product AIn product AIn produc

In [29]: from wordcloud import WordCloud

plt.figure(figsize=(20,20))
plt.imshow(WordCloud().generate(sentences_as_one_string))

Out[29]: <matplotlib.image.AxesImage at Ox1b3a3d2bb50>
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