
1 | P a g e

Targeting Success: A Business Case Analysis
of 100k Orders at Target in Brazil

by Emma Luk

1. Import the dataset and do usual exploratory analysis steps like checking
the structure & characteristics of the dataset

1. Understanding the data

Based on the given datasets, it can identify the following relationships between them:

1. Customers and Orders:

▪ The "customers.csv" file contains information about customers, including their unique IDs,

zip codes, cities, and states.

▪ The "orders.csv" file contains information about orders, including the order IDs, customer

IDs, order status, purchase timestamps, delivery dates, and estimated delivery dates.

▪ The relationship between these two datasets is established through the "customer_id"

column in the "orders.csv" file, which references the unique IDs of customers in the

"customers.csv" file.

2. Sellers and Orders:

▪ The "sellers.csv" file contains information about sellers, including their unique IDs, zip

codes, cities, and states.

▪ The "order_items.csv" file contains information about order items, including the order

IDs, order item IDs, product IDs, seller IDs, shipping limit dates, prices, and freight values.

▪ The relationship between these two datasets is established through the "seller_id"

column in the "order_items.csv" file, which references the unique IDs of sellers in the

"sellers.csv" file.

3. Payments and Orders:

▪ The "payments.csv" file contains information about payments, including the order IDs,

payment sequential numbers, payment types, payment instalments, and payment values.

▪ The "orders.csv" file also contains information about orders, including the order IDs,

customer IDs, order status, purchase timestamps, delivery dates, and estimated delivery

dates.

▪ The relationship between these two datasets is established through the "order_id"

column, which is common in both the "payments.csv" and "orders.csv" files.

4. Reviews and Orders:

▪ The "order_reviews.csv" file contains information about reviews, including the review IDs,

order IDs, review scores, review comment titles, review creation timestamps, and review

answer timestamps.

2 | P a g e

▪ The "orders.csv" file also contains information about orders, including the order IDs,

customer IDs, order status, purchase timestamps, delivery dates, and estimated delivery

dates.

▪ The relationship between these two datasets is established through the "order_id"

column, which is common in both the "order_reviews.csv" and "orders.csv" files.

5. Products and Order Items:

▪ The "products.csv" file contains information about products, including the product IDs,

product category names, product name lengths, product description lengths, product

photos quantities, product weight in grams, product length in centimetres, product height

in centimetres, and product width in centimetres.

▪ The "order_items.csv" file contains information about order items, including the order IDs,

order item IDs, product IDs, seller IDs, shipping limit dates, prices, and freight values.

▪ The relationship between these two datasets is established through the "product_id"

column in the "order_items.csv" file, which references the unique IDs of products in the

"products.csv" file.

6. Geolocation and Customers/Sellers:

▪ The "geolocation.csv" file contains information about geolocations, including the zip code

prefixes, latitudes, longitudes, cities, and states.

▪ The "customers.csv" file contains information about customers, including their unique IDs,

zip codes, cities, and states.

▪ The "sellers.csv" file contains information about sellers, including their unique IDs, zip

codes, cities, and states.

▪ The relationship between the "geolocation.csv" file and the "customers.csv" and

"sellers.csv" files is established through the zip code prefixes, which are common in all

three files and can be used to join or merge the datasets based on the location

information.

Based on these relationships, data analysts at Target could perform various analyses, such as

customer segmentation (Section 7.1 Analysing Customer Sentiment with Natural language) based

on customer reviews and review scores.

1.1 Data type of columns in tables

(Section 7.1 Analysing Customer Sentiment with Natural language), very often it is easier to perform

analysis using SQL or BigQuery on data we have right in the tables and then move forward to ML/AI/Data

science and engineering in Python.

Python codes:

(Figure 1 Python codes) The “df.shape” function returns the shape of the “dataframe”, “df.dtypes”

function returns the data types of each column in the dataframe, and “df.describe()” function returns

the descriptive statistics of the numerical columns in the dataframe.

3 | P a g e

import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import seaborn as sns
plt.style.use('ggplot')
Display the shape of the dataframe
df.shape

Display the data types of each column in the dataframe
df.dtypes

Display descriptive statistics of the numerical columns in the dataframe
df.describe()
Figure 1 Python codes

(Figure 1.1 Analyse Data Types of Columns for different tables with Common Table Expression (CTE)),

data_type: This is likely meant to display the data types of the columns in the table, which would give

information about the type of data stored in each column (e.g., integer, float, string).

Analyse Data Types of Columns

To analyse the data types of columns in a table, use the following query in BigQuery:

--
-- Data type of columns in tables
-- Analyse Data Types of Columns for different tables
-- with Common Table Expression (CTE)
--
WITH customer_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers'
),
seller_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'sellers'
),
order_items_columns AS (
SELECT column_name, data_type
FROM`target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'order_items'
),
geolocations_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'geolocations'
),
payments_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'payments'
),
orders_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'orders'
),
reviews_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'order_reviews'

4 | P a g e

),
products_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'products'
)
-- Analyse Data Types of Columns for different tables with Common Table Expression (CTE)
SELECT column_name, data_type FROM customer_columns
UNION ALL
SELECT column_name, data_type FROM seller_columns
UNION ALL
SELECT column_name, data_type FROM order_items_columns
UNION ALL
SELECT column_name, data_type FROM geolocations_columns
UNION ALL
SELECT column_name, data_type FROM payments_columns
UNION ALL
SELECT column_name, data_type FROM orders_columns
UNION ALL
SELECT column_name, data_type FROM reviews_columns
UNION ALL
SELECT column_name, data_type FROM products_columns;

Figure 1.1 Analyse Data Types of Columns for different tables with Common Table Expression (CTE)

Query results in the following:

Figure 1.2 Query results

5 | P a g e

1.2 Data shape of rows and columns in tables

shape: This is likely meant to display the shape of a table, which would be the number of rows and

columns in the table.

(Figure 1.3 BigQuery: shape) The code provided is a series of SQL queries written in BigQuery (a cloud-

based data warehousing and analytics platform by Google) that are used to determine the shape (i.e.,

number of columns and rows) of various tables in a dataset named target_business in a BigQuery project

named target-business-case-382621.

The tables being queried are:

▪ customers: Provides information about customers.

▪ sellers: Provides information about sellers.

▪ order_items: Provides information about order items.

▪ geolocation: Provides information about geolocations.

▪ payments: Provides information about payments.

▪ orders: Provides information about orders.

▪ order_reviews: Provides information about order reviews.

▪ products: Provides information about products.

(Figure 1.3 BigQuery: shape) Each query uses a Common Table Expression (CTE) to calculate the number

of distinct columns (num_columns) in each table using the COUNT(DISTINCT column_name) function,

and the total number of rows (num_rows) in each table using a subquery with COUNT(*). The final

output of each query is a result set with two columns: num_columns and num_rows, which represent

the shape of the respective table in terms of columns and rows.

-- -- Data shape tables in tables
-- Analyse shape tables for different tables
-- with Common Table Expression (CTE)

-- BigQuery shape table for customers table
WITH customer_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.customers`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'customers'
)
SELECT num_columns, num_rows
FROM customer_shape;

-- BigQuery shape table for sellers table
WITH seller_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.sellers`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'sellers'
)

6 | P a g e

SELECT num_columns, num_rows
FROM seller_shape;

-- BigQuery shape table for order_items table
WITH order_items_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.order_items`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'order_items'
)
SELECT num_columns, num_rows
FROM order_items_shape;

-- BigQuery shape table for geolocations table
WITH geolocations_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.geolocation`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'geolocation'
)
SELECT num_columns, num_rows
FROM geolocations_shape;

-- BigQuery shape table for payments table
WITH payments_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.payments`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'payments'
)
SELECT num_columns, num_rows
FROM payments_shape;

-- BigQuery shape table for orders table
WITH orders_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-382621.target_business.orders`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'orders'
)
SELECT num_columns, num_rows
FROM orders_shape;

-- BigQuery shape table for reviews table
WITH reviews_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.order_reviews`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'order_reviews'
)
SELECT num_columns, num_rows
FROM reviews_shape;

-- BigQuery shape table for products table
WITH products_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,

7 | P a g e

 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.products`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'products'
)
SELECT num_columns, num_rows
FROM products_shape;
Figure 1.3 BigQuery: shape

Query Results:

the shape (i.e., number of columns
and rows) for customers table:

the shape (i.e., number of
columns and rows) for sellers
table:

the shape (i.e., number of
columns and rows) for
order_items:

the shape (i.e., number of columns
and rows) for geolocations table:

the shape (i.e., number of
columns and rows) for
payments table:

the shape (i.e., number of
columns and rows) for orders
table:

the shape (i.e., number of columns
and rows) for reviews table:

the shape (i.e., number of
columns and rows) for
products table:

Here is the interpretation of the output:

▪ customers.csv: The table has 5 columns and 99441 rows.

▪ sellers.csv: The table has 4 columns and 3095 rows.

▪ order_items.csv: The table has 7 columns and 112650 rows.

▪ geolocations.csv: The table has 5 columns and 1000163 rows.

▪ payments.csv: The table has 5 columns and 103886 rows.

▪ orders.csv: The table has 8 columns and 99441 rows.

▪ reviews.csv: The table has 6 columns and 99224 rows.

▪ products.csv: The table has 9 columns and 32951 rows.

1.2 Time period for which the data is given

(Figure 1.4 BigQuery: Time period for which the data is given), here's the BigQuery that uses Common

Table Expressions (CTEs) to find out the time period for which the data is given in the Target dataset:

-- 1.2. Time period for which the data is given

WITH min_max_dates AS (
 SELECT

8 | P a g e

 MIN(order_purchase_timestamp) AS min_date,
 MAX(order_purchase_timestamp) AS max_date
 FROM
 target_business.orders
)
SELECT
 FORMAT_TIMESTAMP('%Y-%m-%d', min_date) AS min_purchase_date,
 FORMAT_TIMESTAMP('%Y-%m-%d', max_date) AS max_purchase_date
FROM
 min_max_dates;
Figure 1.4 BigQuery: Time period for which the data is given

(Figure 1.4 BigQuery: Time period for which the data is given), in this query, first define a Common Table

Expression (CTE) called min_max_dates which calculates the minimum and maximum purchase

timestamps from the orders table using the MIN() and MAX() functions. Then, in the main query, use the

FORMAT_TIMESTAMP() function to format the minimum and maximum purchase timestamps as dates in

the 'YYYY-MM-DD' format, and alias them as min_purchase_date and max_purchase_date, respectively.

This query will return the minimum and maximum purchase dates from the orders table, which represent

the time period for which the data is given in the Target dataset.

Query Results:

-- min_purchase_date: 2016-09-04
-- max_purchase_date: 2018-10-17

1.3 Cities and States of customers ordered during the given period

(Figure 1.5 BigQuery: Cities and States of customers ordered during the given period using Common

Table Expression (CTE)), in this query, a Common Table Expression (CTE) named orders_cte is used to

retrieve the distinct customer_city and customer_state from the orders table, customers table, and

geolocation table. The ON clause specifies the join conditions between the tables. The WHERE clause

filters the orders based on the given period using the order_purchase_timestamp column.

Finally, the main query selects the customer_city and customer_state columns from the CTE and orders

the results by customer_state and customer_city.

-
- Cities and States of customers ordered during the given period using Common Table Expression (
CTE)

WITH orders_cte AS (
 SELECT DISTINCT customer_city, customer_state
 FROM target_business.orders o
 JOIN target_business.customers c ON o.customer_id = c.customer_id
 JOIN target_business.geolocation g ON c.customer_zip_code_prefix = g.geolocation_zip_code_pref
ix
 WHERE o.order_purchase_timestamp BETWEEN '2016-09-04 21:15:19 UTC' AND '2018-10-
17 17:30:18 UTC'

9 | P a g e

)
SELECT customer_city, customer_state
FROM orders_cte
ORDER BY customer_state, customer_city;
Figure 1.5 BigQuery: Cities and States of customers ordered during the given period using Common Table
Expression (CTE)

Query Results:

DISTINCT Cities and States of customers ordered during the given period: 4259

Figure 1.6 DISTINCT Cities and States of customers ordered during the given period: 4259

2. In-depth Exploration:

2.1 Is there a growing trend on e-commerce in Brazil? How can we describe a
complete scenario? Can we see some seasonality with peaks at specific
months?

(Figure 2.1 Breaking Down Brazil's E-commerce Boom: Seasonal Peaks and Complete Trends), based on

the data, it can see a clear growing trend in e-commerce in Brazil. The number of orders and revenue have

steadily increased throughout the year, with a notable increase in the number of orders from May to

August, and then a slight decrease in September to December.

The data shows that there were 3,318 orders and 65,731,702.59 BRL revenue in January, while in

December, there were 2,336 orders and 45,203,634.93 BRL revenue.

Overall, the data suggests that e-commerce in Brazil is on the rise, and that there are specific months

where it can see a peak in orders and revenue. However, to fully describe a complete scenario, it would

need to analyse more data, such as the types of products being sold, the demographics of the buyers, and

any external factors that may be contributing to the growth in e-commerce.

10 | P a g e

-- Breaking Down Brazil's E-commerce Boom: Seasonal Peaks and Complete Trends

SELECT

 EXTRACT(MONTH FROM order_purchase_timestamp) AS month,

 COUNT(DISTINCT o.order_id) AS num_orders,

 SUM(oi.price + oi.freight_value) AS revenue

FROM

 `target-business-case-382621.target_business.orders` o

 JOIN `target-business-case-382621.target_business.order_items` oi ON o.order_id = oi.order_id

 JOIN `target-business-case-382621.target_business.customers` c ON o.customer_id = c.customer_id

 JOIN `target-business-case-382621.target_business.geolocation` g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix

WHERE

 g.geolocation_state = 'SP'

GROUP BY

 month

ORDER BY
 month ASC;

Figure 2 BigQuery: Breaking Down Brazil's E-commerce Boom: Seasonal Peaks and Complete Trends

11 | P a g e

Figure 2.1 Breaking Down Brazil's E-commerce Boom: Seasonal Peaks and Complete Trends

2.2 What time do Brazilian customers tend to buy (Dawn, Morning,
Afternoon or Night)?

▪ (Figure 2.2 BigQuery: Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night), in

this query, it join the orders and customers tables on the customer_id column to get the

order_purchase_timestamp column and the customer_state column in the same result set. It filter

the results to only include orders from the Sao Paulo state, which is where Target operates in

Brazil.

▪ It then extract the hour of the day from the order_purchase_timestamp column using the

EXTRACT function, and group the results by the purchase hour. Finally, it count the number of

orders in each hour and sort the results by the purchase hour in ascending order.

▪ This query will return a table with two columns: purchase_hour and total_orders. The

purchase_hour column will contain the hour of the day (in 24-hour format) when the orders were

made, and the total_orders column will contain the number of orders made in that hour. (Figure

2.3 Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)), it can interpret the

results to find out what time Brazilian customers tend to buy more: early morning, morning,

afternoon or night.

SELECT

 EXTRACT(HOUR FROM order_purchase_timestamp) AS purchase_hour,

 COUNT(*) AS total_orders

FROM

 `target-business-case-382621.target_business.orders` AS o

 JOIN `target-business-case-382621.target_business.customers` AS c ON o.customer_id = c.customer_id

WHERE

12 | P a g e

 c.customer_state = 'SP' -- Select only orders from Sao Paulo state

GROUP BY

 purchase_hour

ORDER BY

 purchase_hour

Figure 2.2 BigQuery: Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)

Query results:

Figure 2.3 Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)

13 | P a g e

Figure 2.4 Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)

14 | P a g e

3. Evolution of E-commerce orders in the Brazil region:

3.1 Get month on month orders by states

(Figure 3 BigQuery: Get month on month orders by states), this query begins with a SELECT statement

that specifies three columns to be retrieved: "EXTRACT(MONTH FROM order_purchase_timestamp)"

aliased as "order_month", "c.customer_state", and "COUNT(DISTINCT o.order_id)" aliased as

"order_count." The "order_purchase_timestamp" column is likely a timestamp column that represents

the date and time when the order was made, and the "o.order_id" column is likely a unique identifier for

each order. The EXTRACT() function is used to extract the month component from the

"order_purchase_timestamp" column, which will be used to group the results by month. The

"c.customer_state" column likely represents the state where the customer who made the order is located.

The COUNT(DISTINCT) function is used to count the number of distinct order IDs, which represents the

number of orders made in each month for each state.

The query then uses a JOIN clause to combine the "orders" and "customers" tables based on the condition

"o.customer_id = c.customer_id". This indicates that the "customer_id" column in the "orders" table is

being matched with the "customer_id" column in the "customers" table, presumably to link the order data

with the corresponding customer data.

Next, the query uses a WHERE clause to filter the results based on the "order_purchase_timestamp"

column, specifying a date range between '2016-09-04 21:15:19 UTC' and '2018-10-17 17:30:18 UTC'. This

restricts the analysis to orders made within this time frame.

The query then uses a GROUP BY clause to group the results by "order_month" and "c.customer_state,"

which represents the month and state of the orders, respectively. This allows for calculating the order

counts for each month and state separately.

Finally, the query uses an ORDER BY clause to sort the results by "order_month" and "c.customer_state,"

which represents the chronological order of the months and the alphabetical order of the states,

respectively.

In summary, this SQL query retrieves order data from a database, joins it with customer data, filters the

results by a specific date range, groups the results by month and state, and orders them chronologically by

month and alphabetically by state to analyse the evolution of e-commerce orders in the Brazil region over

time.

-- Evolution of E-commerce orders in the Brazil region:

-- Get month on month orders by states
SELECT
 EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month,
 -- DATE_TRUNC('month', o.order_purchase_timestamp) AS order_month,
 c.customer_state,
 COUNT(DISTINCT o.order_id) AS order_count

15 | P a g e

FROM
 target_business.orders o
 JOIN target_business.customers c ON o.customer_id = c.customer_id
WHERE
 o.order_purchase_timestamp >= '2016-09-
04 21:15:19 UTC' AND o.order_purchase_timestamp < '2018-10-17 17:30:18 UTC'
GROUP BY
 order_month,
 c.customer_state
ORDER BY
 order_month,
 c.customer_state;

Figure 3 BigQuery: Get month on month orders by states

Query results:

Figure 3.1 Get month on month orders by states

16 | P a g e

Figure 3.2 Get month on month orders by states

Figure 3.2 Get month on month orders by states

17 | P a g e

Figure 3.2 Get month on month orders by states

3.2 Distribution of customers across the states in Brazil

(Figure 3.3 BigQuery: From North to South: Exploring Customer Distribution in Brazil) This query begins

with a SELECT statement that specifies two columns to be retrieved: "c.customer_state" and

"COUNT(c.customer_id)" aliased as "customer_count." The "c.customer_state" column likely represents

the state where the customers are located, and the "c.customer_id" column is likely a unique identifier for

each customer. The COUNT() function is used to count the number of customers in each state.

The query then uses a JOIN clause to combine the "customers" and "geolocation" tables based on the

condition "c.customer_zip_code_prefix = g.geolocation_zip_code_prefix". This indicates that the

"customer_zip_code_prefix" column in the "customers" table is being matched with the

"geolocation_zip_code_prefix" column in the "geolocation" table, presumably to link the customer data

with their corresponding geographical location.

Next, the query uses a GROUP BY clause to group the results by the "customer_state" column, which

represents the state where the customers are located. This is followed by an ORDER BY clause that sorts

the results in descending order based on the "customer_count" column, which represents the count of

customers in each state.

In summary, this SQL query retrieves customer data from a database, joins it with geolocation data, groups

the results by state, and orders them by the number of customers in each state, providing insights into

customer distribution in Brazil from north to south.

18 | P a g e

--From North to South: Exploring Customer Distribution in Brazil

SELECT c.customer_state, COUNT(c.customer_id) as customer_count
FROM target_business.customers c
JOIN target_business.geolocation g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
GROUP BY c.customer_state
ORDER BY customer_count DESC;

Figure 3.3 BigQuery: From North to South: Exploring Customer Distribution in Brazil

The distribution of customers across the states in Brazil is as follows:

Query results:

Figure 3.4 Query results: From North to South: Exploring Customer Distribution in Brazil

(Figure 3.4 Query results: From North to South: Exploring Customer Distribution in Brazil), the query

results provided show data for customer counts in different states of Brazil. Here is a breakdown of

the information:

1. SP: São Paulo - 5,620,450 customers

2. RJ: Rio de Janeiro - 3,015,709 customers

3. MG: Minas Gerais - 2,878,728 customers

4. RS: Rio Grande do Sul - 805,359 customers

5. PR: Paraná - 626,035 customers

6. SC: Santa Catarina - 538,624 customers

19 | P a g e

7. BA: Bahia - 365,875 customers

8. ES: Espírito Santo - 316,654 customers

9. GO: Goiás - 133,151 customers

10. MT: Mato Grosso - 122,400 customers

11. PE: Pernambuco - 114,588 customers

12. DF: Distrito Federal - 93,304 customers

13. PA: Pará - 83,554 customers

14. CE: Ceará - 63,507 customers

15. MS: Mato Grosso do Sul - 61,484 customers

16. MA: Maranhão - 53,383 customers

17. AL: Alagoas - 34,861 customers

18. PB: Paraíba - 27,714 customers

19. SE: Sergipe - 24,584 customers

20. PI: Piauí - 23,913 customers

21. RO: Rondônia - 21,239 customers

22. RN: Rio Grande do Norte - 20,595 customers

23. TO: Tocantins - 17,509 customers

24. AC: Acre - 7,649 customers

25. AM: Amazonas - 5,587 customers

26. AP: Amapá - 4,912 customers

27. RR: Roraima - 2,087 customers

(Figure 3.4 Query results: From North to South: Exploring Customer Distribution in Brazil), these results

provide the customer count for each state in Brazil, arranged in descending order from the highest count

in São Paulo (SP) to the lowest count in Roraima (RR).

(Figure 3.4 Query results: From North to South: Exploring Customer Distribution in Brazil), this

distribution shows the number of customers in each state of Brazil based on the dataset provided, with

the highest number of customers in São Paulo (SP) and the lowest number of customers in Roraima (RR).

Here is more information about São Paulo (SP) and Roraima (RR):

São Paulo (SP):

▪ São Paulo is a state located in the south-eastern region of Brazil and is the most populous state in

the country.

▪ It has the highest number of customers among all the states listed in the query, with a customer

count of 5,620,450.

▪ São Paulo is known for its diverse economy, with a strong focus on industries such as finance,

services, manufacturing, and agriculture.

▪ The capital of São Paulo state is São Paulo City, which is also the largest city in Brazil and one of

the largest cities in the world in terms of population and economic activity.

20 | P a g e

▪ São Paulo is known for its cultural richness, with a vibrant arts scene, diverse cuisine, and

numerous cultural events and festivals.

Roraima (RR):

▪ Roraima is a state located in the northern region of Brazil, and it has the lowest number of

customers among all the states listed in the query, with a customer count of 2,087.

▪ Roraima is the least populous state in Brazil and is known for its unique geographical feature,

Mount Roraima, which is a tabletop mountain and a popular tourist destination.

▪ The capital of Roraima state is Boa Vista, which is the only capital city in Brazil located entirely

north of the equator.

▪ Roraima is characterised by its rich indigenous culture, with a significant population of indigenous

peoples, and has a unique cultural heritage.

▪ Roraima has a relatively small economy with a focus on agriculture, mining, and renewable

energy resources. It is also known for its natural beauty and ecotourism opportunities, with

several protected areas and national parks within its borders.

Figure 3.4 From North to South: Exploring Customer Distribution in Brazil

21 | P a g e

Figure 3.4 From North to South: Exploring Customer Distribution in Brazil

Figure 3.4 From North to South: Exploring Customer Distribution in Brazil

(Figure 3.4 From North to South: Exploring Customer Distribution in Brazil) The table above shows the

distribution of customers across states in Brazil, with the customer_state column representing the state

code and the customer_count column representing the total number of customers in each state.

The distribution of customers across states appears to follow a skewed distribution, with a few states

having significantly higher customer counts compared to others. The state of São Paulo (SP) has the

highest number of customers at 5,620,450, followed by Rio de Janeiro (RJ) with 3,015,709 customers,

22 | P a g e

and Minas Gerais (MG) with 2,878,728 customers. As we move to other states, the number of customers

gradually decreases, with states such as AM (Amazonas), AP (Amapá), and RR (Roraima) having relatively

lower customer counts.

This skewed distribution is further supported by the fact that the states with higher customer counts are

located in the more populous and economically developed regions of Brazil, such as the Southeast and

South regions, while states with lower customer counts are located in less populous and economically

developed regions, such as the North and Northeast regions.

It's important to note that this distribution is based on the dataset provided and may not necessarily

reflect the actual population distribution of customers across states in Brazil. Additionally, other factors

such as market size, population density, economic activity, and customer behaviour could also impact

the distribution of customers across states.

4. Impact on Economy: Analyse the money movement by e-commerce by

looking at order prices, freight and others.

4.1 Get % increase in cost of orders from 2017 to 2018 (include months

between Jan to Aug only) - You can use “payment_value” column in payments

table

(Figure 4 BigQuery: From 2017 to 2018: Calculating the Percentage Increase in Order Costs), this code

uses the EXTRACT function to extract the year and month from the order_purchase_timestamp column

in the orders table. It then calculates the total payment value for orders in 2017 and 2018 separately

using the SUM function with conditional aggregation, and calculates the percentage increase in the total

payment value from 2017 to 2018. The result is grouped by year and month, and ordered by year and

month for better presentation.

--- From 2017 to 2018: Calculating the Percentage Increase in Order Costs

WITH A AS

(

 SELECT

 EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,

 SUM(p.payment_value) as cost_of_orders

 FROM

 target_business.orders o

 JOIN

 target_business.payments p ON o.order_id = p.order_id

 WHERE

 EXTRACT(month FROM o.order_purchase_timestamp) BETWEEN 1 AND 8

 GROUP BY

 1

)

SELECT

 ROUND(((a2.cost_of_orders / a1.cost_of_orders) - 1) * 100, 2) as perc_increase

FROM

 A as a1, A as a2

WHERE

 a1.year = 2017 AND a2.year = 2018;

Figure 4 BigQuery: From 2017 to 2018: Calculating the Percentage Increase in Order Costs

23 | P a g e

Query results

4.2 Mean & Sum of price and freight value by customer state

(Figure 4.2 BigQuery: State-wise E-commerce Insights: Mean and Sum of Price and Freight Values

Common Table Expression (CTE) to retrieve order items data) In this query, it first create two CTEs -

order_items_cte and customers_cte - to extract the relevant columns from the order_items and

customers CSV files, respectively. Then, it create a combined CTE called combined_data by joining the

order_items_cte, orders, and customers_cte tables on their respective keys.

Finally, it use the combined_data CTE to perform aggregation using AVG and SUM functions to calculate

the mean and sum of price and freight_value columns, respectively, grouped by customer_state. This

will give us the desired result of mean and sum of price and freight value by customer state.

-- State-wise E-commerce Insights: Mean and Sum of Price and Freight Values

-- Common Table Expression (CTE) to retrieve order items data

WITH order_items_cte AS (

 SELECT order_id, price, freight_value

 FROM target_business.order_items

),

-- Common Table Expression (CTE) to retrieve customers data

customers_cte AS (

 SELECT customer_id, customer_state

 FROM target_business.customers c

),

-- Common Table Expression (CTE) to combine data from order_items_cte, orders, and customers_cte

combined_data AS (

 SELECT c.customer_state, oi.price, oi.freight_value

 FROM order_items_cte oi

 INNER JOIN target_business.orders o ON oi.order_id = o.order_id

 INNER JOIN customers_cte c ON o.customer_id = c.customer_id

)

-- Main query to calculate mean and sum for each customer state

SELECT customer_state,

 AVG(price) AS mean_price,

 SUM(price) AS sum_price,

 AVG(freight_value) AS mean_freight_value,

24 | P a g e

 SUM(freight_value) AS sum_freight_value

FROM combined_data

GROUP BY customer_state;

Figure 4.2 BigQuery: State-wise E-commerce Insights: Mean and Sum of Price and Freight Values

Common Table Expression (CTE) to retrieve order items data

Query results:

25 | P a g e

5. Analysis on sales, freight and delivery time

5.1 Calculate days between purchasing, delivering and estimated delivery

(Figure 5 BigQuery: Calculate days between purchasing, delivering and estimated delivery), to calculate

the days between purchasing, delivering, and estimated delivery, I use the following formula:

▪ Days between purchasing and delivering = carrier_delay + customer_delay

▪ Days between purchasing and estimated delivery = estimated_delivery_delay

The "order_id" is the unique identifier for each order. "carrier_delay" represents the number of days of

delay caused by the carrier in delivering the order. "customer_delay" represents the number of days of

delay caused by the customer in receiving the order. "estimated_delivery_delay" represents the

estimated number of days for delivery as provided by the seller.

The results will provide the time duration in days between the different stages of the order process,

including the time it took for the carrier to deliver the order, the estimated delivery time provided by the

seller, and any delays caused by the customer. This analysis can help identify patterns or trends in sales,

freight, and delivery time, and provide insights for improving order management and customer

satisfaction.

--Analysis on sales, freight and delivery time

--Calculate days between purchasing, delivering and estimated delivery

WITH order_info AS (

 SELECT

 o.order_id,

 o.order_purchase_timestamp,

 o.order_delivered_carrier_date,

 o.order_delivered_customer_date,

 o.order_estimated_delivery_date

 FROM

 target_business.orders o

)

, order_delays AS (

 SELECT

 order_id,

 DATE_DIFF(order_delivered_carrier_date, order_purchase_timestamp, DAY) AS carrier_delay,

 DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS customer_delay,

 DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY) AS estimated_delivery_delay

 FROM

 order_info

)

SELECT

 order_id,

 carrier_delay,

 customer_delay,

 estimated_delivery_delay

FROM

 order_delays;

Figure 5 BigQuery: Calculate days between purchasing, delivering and estimated delivery

26 | P a g e

Query results

Figure 5.1 Calculate days between purchasing, delivering and estimated delivery

27 | P a g e

5.2 Find time_to_delivery & diff_estimated_delivery. Formula for the same

given below:

o time_to_delivery = order_purchase_timestamp-

order_delivered_customer_date

o diff_estimated_delivery = order_estimated_delivery_date-

order_delivered_customer_date

(Figure 5.2 Find time_to_delivery & diff_estimated_delivery), in this query, I create a CTE called

order_data that selects the necessary columns from the orders table, including order_id,

order_purchase_timestamp, order_delivered_customer_date, and order_estimated_delivery_date.

Then, we use the TIMESTAMP_DIFF function to calculate the time difference in hours between

order_purchase_timestamp and order_delivered_customer_date as time_to_delivery, and between

order_estimated_delivery_date and order_delivered_customer_date as diff_estimated_delivery.

Finally, select order_id, time_to_delivery, and diff_estimated_delivery from the order_data CTE.

WITH order_data AS (

 SELECT

 order_id,

 order_purchase_timestamp,

 order_delivered_customer_date,

 order_estimated_delivery_date

 FROM

 `target_business.orders`

)

SELECT

 order_id,

 TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, HOUR) AS time_to_delivery,

 TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, HOUR) AS diff_estimated_delivery

FROM

 order_data;

Figure 5.2 BigQuery: Find time_to_delivery & diff_estimated_delivery

28 | P a g e

Query Results

Figure 5.3 Query results: Find time_to_delivery & diff_estimated_delivery

(Figure 5.3 Query results: Find time_to_delivery & diff_estimated_delivery), the given data appears to

be a table with information related to orders, including order IDs, time taken for delivery (in days)

denoted as "time_to_delivery", and the difference between the estimated delivery date and the actual

delivered customer date denoted as "diff_estimated_delivery". Let's break down the results:

▪ Row 182: The order with ID "d7918e406132d7c81f1b845276b03a3b" took 840 days for delivery,

and the estimated delivery date was 90 days earlier than the actual delivered customer date.

▪ Row 183: The order with ID "2721cdbb603d7ab34553d2e44a6f9ae0" took 202 days for delivery,

and the estimated delivery date was 481 days after the actual delivered customer date.

▪ Row 184: The order with ID "dfc5a5525471e9341af3ad103adbef79" took 365 days for delivery,

and the estimated delivery date was 297 days after the actual delivered customer date.

▪ Row 185: The order with ID "ee4d37f7666f4649a942fad1192bb2f4" took 213 days for delivery,

and the estimated delivery date was 460 days after the actual delivered customer date.

▪ Row 186: The order with ID "a969d2592327e7f49ce1f3edfc7658eb" took 77 days for delivery,

and the estimated delivery date was 410 days after the actual delivered customer date.

29 | P a g e

The same pattern continues for the remaining rows, where "time_to_delivery" represents the time

taken for delivery in days, and "diff_estimated_delivery" represents the difference between the

estimated delivery date and the actual delivered customer date in days. The specific meaning and

implications of these values may depend on the context of the business or system for which this data is

relevant.

5.3 Group data by state, take mean of freight_value, time_to_delivery,

diff_estimated_delivery

(Figure 5.5 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery)
avg_freight_value: This column shows the average freight value for orders in each state. Freight value is
the cost of shipping for an order, and the average value gives an indication of the average shipping cost
incurred by customers in each state.

avg_time_to_delivery: This column shows the average time taken for delivery of orders in each state.
Time to delivery is calculated as the difference between the order purchase timestamp and the order
delivered customer date, and the average time gives an indication of the average delivery speed in each
state.

avg_diff_estimated_delivery: This column shows the average difference between the estimated delivery
date and the actual delivered customer date for orders in each state. The estimated delivery date is
subtracted from the delivered customer date to calculate this difference, and the average value gives an
indication of how closely the estimated delivery dates align with the actual delivery dates in each state.

Overall, these results provide insights into the average shipping cost, delivery speed, and accuracy of
estimated delivery dates for orders in different states.

WITH order_stats AS (

 SELECT

 c.customer_state AS state,

 AVG(oi.freight_value) AS avg_freight_value,

 AVG(date_diff(o.order_delivered_customer_date, o.order_purchase_timestamp, day)) AS avg_time_to_delivery,

 AVG(date_diff(o.order_estimated_delivery_date, o.order_delivered_customer_date, day)) AS avg_diff_estimated_delivery

 FROM

 target_business.customers c

 JOIN

 target_business.orders o ON c.customer_id = o.customer_id

 JOIN

 target_business.order_items oi ON o.order_id = oi.order_id

 GROUP BY

 state

)

SELECT

 state,

 avg_freight_value,

 avg_time_to_delivery,

 avg_diff_estimated_delivery

FROM

 order_stats

ORDER BY

 state;

Figure 5.4 BigQuery: Group data by state, take mean of freight_value, time_to_delivery,
diff_estimated_delivery

30 | P a g e

Query Results

Figure 5.5 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

5.4. Sort the data to get the following:

5.5 Top 5 states with highest/lowest average freight value - sort in desc/asc

limit 5

Explanation (Figure 5.6 BigQuery: Top 5 states with highest/lowest average freight value - sort in

desc/asc limit 5):

• The state_freight_avg CTE calculates the average freight value for each state by joining the

customers, orders, and order_items tables, and grouping by the customer_state column.

• The outer query selects the state and average freight value from the state_freight_avg CTE.

• The ROW_NUMBER() function is used to assign row numbers to the results based on the average

freight value, in descending and ascending order separately.

31 | P a g e

• The results are filtered using the row numbers to limit to the top 5 states with the highest and

lowest average freight value.

• The final results are sorted by average freight value in descending order and state in ascending

order.

-- 5. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

WITH state_freight_avg AS (

 SELECT

 c.customer_state AS state,

 AVG(oi.freight_value) AS avg_freight

 FROM

 target_business.customers c

 JOIN

 target_business.orders o ON c.customer_id = o.customer_id

 JOIN

 target_business.order_items oi ON o.order_id = oi.order_id

 GROUP BY

 c.customer_state

)

SELECT

 state,

 avg_freight

FROM (

 SELECT

 state,

 avg_freight,

 ROW_NUMBER() OVER (ORDER BY avg_freight DESC) AS rn_desc,

 ROW_NUMBER() OVER (ORDER BY avg_freight ASC) AS rn_asc

 FROM

 state_freight_avg

)

WHERE

 rn_desc <= 5 OR rn_asc <= 5

ORDER BY

 avg_freight DESC, state ASC;

Figure 5.6 BigQuery: Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Figure 5.7 Query results: the top 5 states with the highest and lowest average freight value- sort in
desc/asc limit 5 - sort in desc/asc limit 5

32 | P a g e

Here's a query using BigQuery with common table expressions (CTEs) to find the top 5 states with the

highest and lowest average freight value, sorted in descending and ascending order, limited to 5

results:

WITH freight_avg_by_state AS (

 SELECT

 c.customer_state AS state,

 AVG(oi.freight_value) AS avg_freight

 FROM

 target_business.customers c

 INNER JOIN

 target_business.orders o ON c.customer_id = o.customer_id

 INNER JOIN

 target_business.order_items oi ON o.order_id = oi.order_id

 GROUP BY

 state

)

SELECT

 state,

 avg_freight

FROM

 freight_avg_by_state

ORDER BY

 avg_freight DESC

LIMIT

 5; -- Top 5 states with highest average freight value

Figure 5.8 BigQuery: top 5 states with the highest average freight value and the bottom 5 states with
the lowest average freight value

In this query, we first create a Common Table Expression (CTE) named avg_freight to calculate the

average freight value for each state by joining the customers, orders, and order_items tables based on

their respective keys. Then, it use the ORDER BY clause to sort the results in descending order for the top

5 states with the highest average freight value, and in ascending order for the bottom 5 states with the

lowest average freight value. Finally, we use the LIMIT clause to limit the results to 5 rows in each case.

33 | P a g e

Figure 5.9 Query Results: top 5 states with the highest average freight value and the bottom 5 states

with the lowest average freight value

5.6 Top 5 states with highest/lowest average time to delivery

(Figure 6 BigQuery: top 5 states with the highest average freight value and the bottom 5 states with

the lowest average freight value), this query uses two CTEs (Common Table Expressions). The first CTE

order_delivery_time calculates the delivery time in days for each order by subtracting the

order_purchase_timestamp from the order_delivered_customer_date. The second CTE

avg_delivery_time calculates the average delivery time for each state by taking the average of delivery

times grouped by state.

Finally, the outer query selects the states with the top 5 highest and lowest average delivery times by

using ROW_NUMBER() function to rank the states based on average delivery time in ascending and

descending order. The WHERE clause filters the states with ranks less than or equal to 5, and the results

are ordered by rank in ascending and descending order separately.

The given data appears to be a table showing the average time to delivery in days for orders placed at

Target in various states in Brazil. The results are sorted by the average time to delivery, with the top 5

states with the highest average time to delivery and the bottom 5 states with the lowest average time to

delivery. Let's analyse the results:

5.6 a Top 5 states with highest average time to delivery:

• RR (Roraima): The state of Roraima has the highest average time to delivery at Target in Brazil,

with an average of 28.98 days.

• AP (Amapá): Amapá is the second state with the highest average time to delivery at Target in

Brazil, with an average of 26.73 days.

• AM (Amazonas): Amazonas is the third state with the highest average time to delivery at Target in

Brazil, with an average of 25.99 days.

• AL (Alagoas): Alagoas is the fourth state with the highest average time to delivery at Target in

Brazil, with an average of 24.04 days.

34 | P a g e

• PA (Pará): Pará is the fifth state with the highest average time to delivery at Target in Brazil, with

an average of 23.32 days.

5.6b Lowest 5 states with lowest average time to delivery:

• SP (São Paulo): São Paulo is the state with the lowest average time to delivery at Target in Brazil,

with an average of 8.30 days.

• PR (Paraná): Paraná is the second state with the lowest average time to delivery at Target in

Brazil, with an average of 11.53 days.

• MG (Minas Gerais): Minas Gerais is the third state with the lowest average time to delivery at

Target in Brazil, with an average of 11.54 days.

• DF (Distrito Federal): Distrito Federal is the fourth state with the lowest average time to delivery

at Target in Brazil, with an average of 12.51 days.

• SC (Santa Catarina): Santa Catarina is the fifth state with the lowest average time to delivery at

Target in Brazil, with an average of 14.48 days.

The results show the states in Brazil where Target has the highest and lowest average time to delivery

for orders, which can provide insights into the efficiency of the delivery process in different regions of

the country.

--

-- 6. Top 5 states with highest/lowest average time to delivery

WITH order_delivery_time AS (

 SELECT

 c.customer_state AS state,

 TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS delivery_time

 FROM

 target_business.orders o

 JOIN

 target_business.customers c ON o.customer_id = c.customer_id

)

, avg_delivery_time AS (

 SELECT

 state,

 AVG(delivery_time) AS avg_time

 FROM

 order_delivery_time

 GROUP BY

 state

)

SELECT

 state,

 avg_time

FROM (

 SELECT

 state,

 avg_time,

 ROW_NUMBER() OVER (ORDER BY avg_time DESC) AS rank_desc,

 ROW_NUMBER() OVER (ORDER BY avg_time ASC) AS rank_asc

 FROM

 avg_delivery_time

)

35 | P a g e

WHERE

 rank_desc <= 5 OR rank_asc <= 5

ORDER BY

 rank_desc ASC,

 rank_asc ASC;

Figure 6 BigQuery: top 5 states with the highest average freight value and the bottom 5 states with the
lowest average freight value

Figure 6.1 Query results: top 5 states with the highest average freight value and the bottom 5 states
with the lowest average freight value

5.7 Top 5 states where delivery is really fast/ not so fast compared to

estimated date

Explanation of the query:

• Start by defining a CTE called order_delivery which retrieves relevant columns from the orders

and customers tables, and joins them on the customer_id column.

• Next, in the main query, we select the customer_state column from the CTE as state, and use

aggregate functions COUNT, SUM, and CASE statements to calculate the total number of orders,

fast deliveries (where order_delivered_customer_date is less than or equal to

order_estimated_delivery_date), and delayed deliveries (where

order_delivered_customer_date is greater than order_estimated_delivery_date).

• Then group the results by state and order them by fast_deliveries in descending order.

• Finally, limit the results to the top 5 states with the fastest deliveries using the LIMIT clause.

36 | P a g e

The given data appears to be a table showing the total number of orders, fast deliveries, and delayed

deliveries in different states in Brazil. Let's analyse the results:

• SP (São Paulo): São Paulo has a total of 41,746 orders, out of which 38,107 are fast deliveries and

2,387 are delayed deliveries.

• MG (Minas Gerais): Minas Gerais has a total of 11,635 orders, out of which 10,717 are fast

deliveries and 637 are delayed deliveries.

• RJ (Rio de Janeiro): Rio de Janeiro has a total of 12,852 orders, out of which 10,686 are fast

deliveries and 1,664 are delayed deliveries.

• RS (Rio Grande do Sul): Rio Grande do Sul has a total of 5,466 orders, out of which 4,962 are fast

deliveries and 382 are delayed deliveries.

• PR (Paraná): Paraná has a total of 5,045 orders, out of which 4,677 are fast deliveries and 246 are

delayed deliveries.

The data provides information about the total number of orders, as well as the number of fast deliveries

and delayed deliveries in different states in Brazil. This can be used to assess the performance of delivery

services in these states and identify any potential issues or areas for improvement.

WITH order_delivery AS (

 SELECT

 o.order_id,

 o.order_status,

 o.order_purchase_timestamp,

 o.order_delivered_carrier_date,

 o.order_delivered_customer_date,

 o.order_estimated_delivery_date,

 c.customer_state AS state

 FROM

 target_business.orders o

 JOIN

 target_business.customers c

 ON

 o.customer_id = c.customer_id

)

SELECT

 state AS state,

 COUNT(*) AS total_orders,

 SUM(CASE

 WHEN order_status = 'delivered' AND order_delivered_customer_date <= order_estimated_delivery_date THEN 1

 ELSE 0

 END) AS fast_deliveries,

 SUM(CASE

 WHEN order_status = 'delivered' AND order_delivered_customer_date > order_estimated_delivery_date THEN 1

 ELSE 0

 END) AS delayed_deliveries

FROM

 order_delivery

GROUP BY

 state

ORDER BY

 fast_deliveries DESC

LIMIT

 5;

6.2 BigQuery: Top 5 states where delivery is really fast/ not so fast compared to estimated date

37 | P a g e

6.3 Query results: Top 5 states where delivery is really fast/ not so fast compared to estimated date

6.4 Top 5 states where delivery is really fast/ not so fast compared to estimated date

38 | P a g e

6. Payment type analysis:

6.1 Month over Month count of orders for different payment types

The given data appears to be a table showing the count of orders for different payment types at Target

in Brazil on a month-over-month basis. Let's analyse the results:

May 2018: In May 2018, the following counts of orders were made for different payment types:

• UPI (Unified Payments Interface): 1,263 orders

• Credit card: 5,475 orders

• Debit card: 51 orders

• Voucher: 203 orders

June 2018: In June 2018, the following counts of orders were made for different payment types:

• UPI: 1,100 orders

• Credit card: 4,796 orders

• Debit card: 181 orders

• Voucher: 231 orders

July 2018: In July 2018, the following counts of orders were made for different payment types:

• UPI: 1,229 orders

• Credit card: 4,738 orders

• Debit card: 242 orders

• Voucher: 212 orders

August 2018: In August 2018, the following counts of orders were made for different payment types:

• UPI: 1,139 orders

• Credit card: 4,963 orders

• Debit card: 277 orders

• Not defined: 2 orders

• Voucher: 232 orders

September 2018: In September 2018, the following counts of orders were made for different payment

types:

• Not defined: 1 order

• Voucher: 15 orders

• October 2018: In October 2018, the following counts of orders were made for different payment

types:

39 | P a g e

• Voucher: 4 orders

The data provides information about the count of orders for different payment types at Target in Brazil

on a month-over-month basis. This can be used to track the trend of payment types used by customers

over time and identify any changes or patterns in payment preferences.

-- Month over Month count of orders for different payment types

WITH monthly_orders AS (

 SELECT

 DATE_TRUNC(DATE(order_purchase_timestamp), MONTH) AS month,

 p.payment_type,

 COUNT(DISTINCT o.order_id) AS order_count

 FROM

 target_business.orders o

 INNER JOIN

 target_business.payments p ON o.order_id = p.order_id

 GROUP BY

 month,

 payment_type

)

SELECT

 month,

 payment_type,

 SUM(order_count) AS total_orders

FROM

 monthly_orders

GROUP BY

 month,

 payment_type

ORDER BY

 month,

 payment_type;

6.5 BigQuery: Month over Month count of orders for different payment types

40 | P a g e

6.6 Query results: Month over Month count of orders for different payment types

6.7 Month over Month count of orders for different payment types

41 | P a g e

6.2 Count of orders based on the no. of payment instalments
In this SQL, the order_payments CTE is created by joining the orders and payments tables and selecting the

relevant columns. Then, the main query calculates the count of distinct order_id values for each

payment_installments value from the order_payments CTE, using the COUNT function and grouping by

payment_installments.

-- Count of orders based on the no. of payment instalments

WITH order_payments AS (

 SELECT

 o.order_id,

 p.payment_installments

 FROM

 target_business.orders o

 JOIN

 target_business.payments p ON o.order_id = p.order_id

)

SELECT

 payment_installments,

 COUNT(DISTINCT order_id) AS order_count

FROM

 order_payments

GROUP BY
 payment_installments;

Figure 6.8 BigQuery: Count of orders based on the no. of payment instalments

42 | P a g e

Figure 6.9 Query results: Count of orders based on the no. of payment instalments

The given data appears to be a table showing the count of orders based on the number of payment

installments at Target in Brazil. Let's analyse the results:

1) Payment Installments: 2

a) Order Count: 12,389

2) Payment Installments: 4

a) Order Count: 7,088

3) Payment Installments: 3

a) Order Count: 10,443

4) Payment Installments: 8

a) Order Count: 4,253

5) Payment Installments: 9

a) Order Count: 644

6) Payment Installments: 5

a) Order Count: 5,234

7) Payment Installments: 12

43 | P a g e

a) Order Count: 133

8) Payment Installments: 20

a) Order Count: 17

9) Payment Installments: 15

a) Order Count: 74

10) Payment Installments: 11

a) Order Count: 23

11) Payment Installments: 13

a) Order Count: 16

12) Payment Installments: 0

a) Order Count: 2

13) Payment Installments: 18

a) Order Count: 27

14) Payment Installments: 24

a) Order Count: 18

15) Payment Installments: 23

a) Order Count: 1

16) Payment Installments: 14

a) Order Count: 15

17) Payment Installments: 17

a) Order Count: 8

18) Payment Installments: 16

a) Order Count: 5

19) Payment Installments: 21

a) Order Count: 3

20) Payment Installments: 22

a) Order Count: 1

The data provides information about the count of orders based on the number of payment installments

chosen by customers at Target in Brazil. This can be used to analyse the purchasing behaviour and

preferences of customers in terms of payment options, and to tailor marketing and sales strategies

accordingly.

Actionable Insights:

The given data appears to be a table showing the count of orders based on the number of payment

installments at Target in Brazil. Let's analyse the results:

▪ Payment Installments: 2 - There are 12,389 orders with 2 payment installments.

▪ Payment Installments: 4 - There are 7,088 orders with 4 payment installments.

▪ Payment Installments: 3 - There are 10,443 orders with 3 payment installments.

▪ Payment Installments: 8 - There are 4,253 orders with 8 payment installments.

▪ Payment Installments: 9 - There are 644 orders with 9 payment installments.

44 | P a g e

▪ Payment Installments: 5 - There are 5,234 orders with 5 payment installments.

▪ Payment Installments: 12 - There are 133 orders with 12 payment installments.

▪ Payment Installments: 20 - There are 17 orders with 20 payment installments.

▪ Payment Installments: 15 - There are 74 orders with 15 payment installments.

▪ Payment Installments: 11 - There are 23 orders with 11 payment installments.

▪ Payment Installments: 13 - There are 16 orders with 13 payment installments.

▪ Payment Installments: 0 - There are 2 orders with 0 payment installments.

▪ Payment Installments: 18 - There are 27 orders with 18 payment installments.

▪ Payment Installments: 24 - There are 18 orders with 24 payment installments.

▪ Payment Installments: 23 - There is 1 order with 23 payment installments.

▪ Payment Installments: 14 - There are 15 orders with 14 payment installments.

▪ Payment Installments: 17 - There are 8 orders with 17 payment installments.

▪ Payment Installments: 16 - There are 5 orders with 16 payment installments.

▪ Payment Installments: 21 - There are 3 orders with 21 payment installments.

▪ Payment Installments: 22 - There is 1 order with 22 payment installments.

45 | P a g e

7. Actionable Insights

(In section 6 payment installments), the given data appears to be a table showing the count of orders

based on the number of payment installments at Target in Brazil. The results:

▪ Payment Installments: 2 - There are a total of 12,389 orders with 2 payment installments.

▪ Payment Installments: 4 - There are a total of 7,088 orders with 4 payment installments.

▪ Payment Installments: 3 - There are a total of 10,443 orders with 3 payment installments.

▪ Payment Installments: 8 - There are a total of 4,253 orders with 8 payment installments.

▪ Payment Installments: 9 - There are a total of 644 orders with 9 payment installments.

▪ Payment Installments: 5 - There are a total of 5,234 orders with 5 payment installments.

▪ Payment Installments: 12 - There are a total of 133 orders with 12 payment installments.

▪ Payment Installments: 20 - There are a total of 17 orders with 20 payment installments.

▪ Payment Installments: 15 - There are a total of 74 orders with 15 payment installments.

▪ Payment Installments: 11 - There are a total of 23 orders with 11 payment installments.

▪ Payment Installments: 13 - There are a total of 16 orders with 13 payment installments.

▪ Payment Installments: 0 - There are a total of 2 orders with 0 payment installments.

▪ Payment Installments: 18 - There are a total of 27 orders with 18 payment installments.

▪ Payment Installments: 24 - There are a total of 18 orders with 24 payment installments.

▪ Payment Installments: 23 - There is only 1 order with 23 payment installments.

▪ Payment Installments: 14 - There are a total of 15 orders with 14 payment installments.

▪ Payment Installments: 17 - There are a total of 8 orders with 17 payment installments.

▪ Payment Installments: 16 - There are a total of 5 orders with 16 payment installments.

▪ Payment Installments: 21 - There are a total of 3 orders with 21 payment installments.

▪ Payment Installments: 22 - There is only 1 order with 22 payment installments.

Actionable Insights for payment:

▪ Most orders have payment installments ranging from 2 to 5, indicating that customers prefer to

divide their payments into smaller installments.

▪ There are a significant number of orders with 0 payment installments, which could indicate that

customers are choosing to pay for their orders in full at the time of purchase.

▪ There are relatively fewer orders with higher payment installments (e.g., 20, 23, 24), indicating that

customers may prefer to avoid longer payment plans.

▪ Target in Brazil may consider analysing the payment installment options and preferences of their

customers to optimize their payment offerings and attract more customers.

▪ Target in Brazil may also consider offering flexible payment plans or promotions to encourage

customers to choose higher payment installments and potentially increase order volume.

Overall, the data on payment installments can help Target in Brazil make informed decisions about their

payment options, pricing strategies, and marketing efforts

46 | P a g e

7.1 Analysing Customer Sentiment:

Natural language processing can be used to build predictive models to perform sentiment analysis on

social media posts and reviews and predict if customers are happy or not. That way, you can automatically

know if your customers are happy or not without manually going through massive number of reviews.

 WITH review_orders AS (
 SELECT
 r.review_id,
 r.order_id,
 r.review_score,
 r.review_comment_title,
 --r.review_comment_message,
 r.review_creation_date,
 r.review_answer_timestamp,
 o.customer_id,
 o.order_status,
 o.order_purchase_timestamp,
 o.order_delivered_carrier_date,
 o.order_delivered_customer_date,
 o.order_estimated_delivery_date
 FROM
 target_business.order_reviews AS r
 JOIN
 target_business.orders AS o
 ON
 r.order_id = o.order_id
)
SELECT
 ro.review_id,
 ro.order_id,
 ro.review_score,
 ro.review_comment_title,
 --ro.review_comment_message,
 ro.review_creation_date,
 ro.review_answer_timestamp,
 ro.customer_id,
 ro.order_status,
 ro.order_purchase_timestamp,
 ro.order_delivered_carrier_date,
 ro.order_delivered_customer_date,
 ro.order_estimated_delivery_date
FROM
 review_orders AS ro;

47 | P a g e

48 | P a g e

very often it is easier to perform analysis using SQL or BigQuery on data we have right in the tables and
then move forward to ML/AI/Data science and engineering in Python.
- with an additional import statement for WordCloud from the wordcloud library. The WordCloud cl
ass is used for generating word clouds, which are visual representations of text data where the
size of each word represents its frequency or importance in the text.
 SELECT
 review_comment_title
 FROM
 target_business.order_reviews
 ORDER BY
 review_comment_title DESC;

49 | P a g e

50 | P a g e

51 | P a g e

7.2 Actionable Insights

Insights and Recommendations (Figure 1.6 DISTINCT Cities and States of customers ordered during the
given period: 4259):

▪ Geographic Distribution: The customers who made orders during the given period are located in

various cities and states in Brazil. Some of the states with a higher number of orders are AP

(Amapá), BA (Bahia), and AM (Amazonas). This indicates that Target has a wide reach and

customer base across different regions in Brazil.

▪ Targeting High-Demand States: Based on the data, it appears that Amapá (AP), Bahia (BA), and

Amazonas (AM) are the states with higher customer orders. Target can focus on these states to

further expand their customer base, increase marketing efforts, and tailor their product offerings

to the preferences and demands of customers in these states.

▪ Understanding Customer Preferences: Analysing the cities and states of customers who made

orders can provide insights into their preferences and buying behaviour. Target can use this

information to better understand customer needs, preferences, and shopping patterns in

different regions. This can help in developing targeted marketing strategies and promotions to

cater to the specific preferences of customers in different cities and states.

▪ Localisation Strategies: Target can leverage the data on cities and states of customers to

implement localization strategies. This can include customizing product offerings, pricing, and

promotions based on the preferences and demands of customers in different cities and states.

For example, offering region-specific products or promotions during local festivals or events can

help Target to better connect with customers and increase sales.

Overall, analysing the cities and states of customers who made orders during the given period can

provide valuable insights.

52 | P a g e

8. Recommendations

▪ Improve Delivery and Shipping Strategies: Analysing the cities and states of customers can also

provide insights into the logistics and shipping requirements for different regions. Target can use

this information to optimise their delivery and shipping strategies, such as improving delivery

times, reducing shipping costs, and enhancing customer experience in different cities and states.

This can help in increasing customer satisfaction and loyalty.

▪ Customer Segmentation: Target can segment customers based on their cities and states to gain a

deeper understanding of customer preferences, behaviours, and needs in different regions. This

can help in creating targeted marketing campaigns, promotions, and product offerings for

different customer segments, leading to increased sales and customer retention.

▪ Customer Feedback and Reviews: Target can also use customer feedback and reviews from

different cities and states to identify any specific pain points, issues, or areas of improvement.

Analysing customer comments and reviews can provide valuable insights into customer

satisfaction, product quality, and service levels in different regions. Target can use this feedback

to address any issues and continuously improve their products and services in different cities and

states.

▪ It may be worth analysing the conversion rates and customer behaviour for different payment

installment options to identify any patterns or trends.

▪ Target in Brazil could consider offering more attractive and flexible payment installment options to

cater to customer preferences and drive higher sales.

▪ Target in Brazil could also consider promoting payment installment options during marketing and

promotional campaigns to encourage customers to choose these options at checkout.

▪ Monitoring customer feedback and conducting surveys to understand customer preferences and

satisfaction with payment installment options can provide valuable insights for improving the

payment experience at Target in Brazil.

Recommendations for Target to optimise their marketing, localisation, delivery, and customer

engagement strategies in different regions of Brazil, leading to increased customer satisfaction,

loyalty, and business growth.

53 | P a g e

References

BigQuery:

-- Targeting Success: A Business Case Analysis of 100k Orders
-- at Target in Brazil by Emma Luk

-- BigQuery shape table for customers table
SELECT count(distinct column_name), (select count(*) from `target-business-case-
382621.target_business.customers`)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers';

-- BigQuery shape table for sellers table
SELECT count(distinct column_name), (select count(*) from `target-business-case-
382621.target_business.sellers`)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'sellers';

-- BigQuery shape table for order_items table
SELECT count(distinct column_name), (select count(*) from `target-business-case-
382621.target_business.order_items`)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'order_items';

-- BigQuery shape table for geolocations table
SELECT count(distinct column_name), (select count(*) from `target-business-case-
382621.target_business.geolocations`)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'geolocations';

-- BigQuery shape table for payments table
SELECT count(distinct column_name), (select count(*) from `target-business-case-
382621.target_business. payments`)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'payments';

-- BigQuery shape table for orders table
SELECT count(distinct column_name), (select count(*) from `target-business-case-
382621.target_business.orders`)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'orders';

-- BigQuery shape table for reviews table
SELECT count(distinct column_name), (select count(*) from `target-business-case-
382621.target_business.reviews`)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'reviews';

-- BigQuery shape table for products table
SELECT count(distinct column_name), (select count(*) from `target-business-case-
382621.target_business.products`)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'products';

-- Analyse Data Types of Columns
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers';

54 | P a g e

-- Analyse Data Types of Columns
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'sellers';

-- Analyse Data Types of Columns
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'order_items';

-- Analyse Data Types of Columns
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'geolocations';

-- Analyse Data Types of Columns
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'payments';

-- Analyse Data Types of Columns
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'orders';

-- Analyse Data Types of Columns
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'order_reviews';

-- Analyse Data Types of Columns
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'products';

--
-- Data type of columns in a table
-- Analyse Data Types of Columns for different tables
-- with Common Table Expression (CTE)
--
WITH customer_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers'
),
seller_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'sellers'
),
order_items_columns AS (
SELECT column_name, data_type
FROM`target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'order_items'
),
geolocations_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'geolocations'
),

55 | P a g e

payments_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'payments'
),
orders_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'orders'
),
reviews_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'order_reviews'
),
products_columns AS (
SELECT column_name, data_type
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'products'
)
-- Analyse Data Types of Columns for different tables with Common Table Expression (CTE)
SELECT column_name, data_type FROM customer_columns
UNION ALL
SELECT column_name, data_type FROM seller_columns
UNION ALL
SELECT column_name, data_type FROM order_items_columns
UNION ALL
SELECT column_name, data_type FROM geolocations_columns
UNION ALL
SELECT column_name, data_type FROM payments_columns
UNION ALL
SELECT column_name, data_type FROM orders_columns
UNION ALL
SELECT column_name, data_type FROM reviews_columns
UNION ALL
SELECT column_name, data_type FROM products_columns;

-- --
-- Data type of columns in a table
-- Analyse Data Types of Columns for different tables
-- with Common Table Expression (CTE)
--
--
-- BigQuery shape table for customers table
--
WITH customer_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.customers`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'customers'
)
SELECT num_columns, num_rows
FROM customer_shape;

-- BigQuery shape table for sellers table
WITH seller_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,

56 | P a g e

 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.sellers`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'sellers'
)
SELECT num_columns, num_rows
FROM seller_shape;

-- BigQuery shape table for order_items table
WITH order_items_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.order_items`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'order_items'
)
SELECT num_columns, num_rows
FROM order_items_shape;

-- BigQuery shape table for geolocations table
WITH geolocations_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.geolocation`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'geolocation'
)
SELECT num_columns, num_rows
FROM geolocations_shape;

-- BigQuery shape table for payments table
WITH payments_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.payments`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'payments'
)
SELECT num_columns, num_rows
FROM payments_shape;

-- BigQuery shape table for orders table
WITH orders_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-382621.target_business.orders`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'orders'
)
SELECT num_columns, num_rows
FROM orders_shape;

-- BigQuery shape table for reviews table
WITH reviews_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.order_reviews`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'order_reviews'
)
SELECT num_columns, num_rows
FROM reviews_shape;

57 | P a g e

-- BigQuery shape table for products table
WITH products_shape AS (
 SELECT COUNT(DISTINCT column_name) AS num_columns,
 (SELECT COUNT(*) FROM `target-business-case-
382621.target_business.products`) AS num_rows
 FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
 WHERE table_name = 'products'
)
SELECT num_columns, num_rows
FROM products_shape;

-- You can now use INFORMATION_SCHEMA - a series of views that provide access to metadata
--- about datasets, tables, and views
SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'order_items';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'order_reviews';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'orders';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'payments';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'products';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM `target-business-case-382621.target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'sellers';

SELECT * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
FROM `target_business.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'sellers';

-- 2. Time period for which the data is given

WITH min_max_dates AS (
 SELECT
 MIN(order_purchase_timestamp) AS min_date,
 MAX(order_purchase_timestamp) AS max_date
 FROM
 target_business.orders
)
SELECT
 FORMAT_TIMESTAMP('%Y-%m-%d', min_date) AS min_purchase_date,
 FORMAT_TIMESTAMP('%Y-%m-%d', max_date) AS max_purchase_date
FROM
 min_max_dates;

58 | P a g e

-- min_purchase_date: 2016-09-04
-- max_purchase_date: 2018-10-17
--

WITH orders_cte AS (
 SELECT
 customer_id,
 customer_city,
 customer_state
 FROM
 `target_business.customers`
 WHERE
 order_purchase_timestamp BETWEEN TIMESTAMP('2016-09-04') AND TIMESTAMP('2018-10-17')
)
SELECT
 customer_city AS city,
 customer_state AS state
FROM
 orders_cte;

SELECT
 o.order_purchase_timestamp AS order_purchase_timestamp,
 FROM
 target_business.orders o;

WITH order_dates AS (
 SELECT
 order_id,
 customer_id,
 customer_city,
 customer_state,
 TIMESTAMP(order_purchase_timestamp) AS purchase_timestamp
 FROM
 target_business.orders o
 WHERE
 TIMESTAMP(order_purchase_timestamp) BETWEEN TIMESTAMP('start_date') AND TIMESTAMP('end_date'
)
),
order_items AS (
 SELECT
 order_id,
 product_id,
 seller_id,
 price,
 freight_value
 FROM
 target_business.order_items oi
)
SELECT
 od.customer_city,
 od.customer_state
FROM
 order_dates od
JOIN
 order_items oi
ON
 od.order_id = oi.order_id

59 | P a g e

JOIN
 target_business.customers c
ON
 c.customer_id = od.customer_id
JOIN
 target_business.geolocation g
ON
 c.customer_zip_code_prefix = g.geolocation_zip_code_prefix;

--
WITH orders_cte AS (
 SELECT
 order_id,
 customer_id,
 order_purchase_timestamp
 FROM
 target_business.orders
 WHERE
 order_purchase_timestamp >= TIMESTAMP("2016-09-04 21:15:19 UTC") -
- Replace with the start date and time of the period
 AND order_purchase_timestamp <= TIMESTAMP("2018-10-17 17:30:18 UTC") -
- Replace with the end date and time of the period
),

customers_cte AS (
 SELECT
 customer_id,
 customer_city,
 customer_state
 FROM
 target_business.customers
)

SELECT
 c.customer_city AS city,
 c.customer_state AS state
FROM
 customers_cte c
JOIN
 orders_cte o
ON
 c.customer_id = o.customer_id
ORDER BY
 c.customer_state, c.customer_city;

-- Define the start and end date for the period
DECLARE @start_date DATE;
DECLARE @end_date DATE;
SET @start_date = '2016-09-04';
SET @end_date = '2018-10-17';

-- CTE to get the order IDs and customer IDs for orders placed during the given period
WITH orders_cte AS (
 SELECT order_id, customer_id
 FROM target_business.orders
 WHERE order_purchase_timestamp BETWEEN @start_date AND @end_date
)

-- CTE to get the customer city and state information
, customer_cte AS (

60 | P a g e

 SELECT customer_id, customer_city, customer_state
 FROM target_business.customers
)

-- CTE to get the geolocation city and state information
, geolocation_cte AS (
 SELECT geolocation_zip_code_prefix, geolocation_city, geolocation_state
 FROM target_business.geolocation
)

-- Join the order, customer, and geolocation CTEs to get the final result
SELECT o.order_id, c.customer_city, c.customer_state, g.geolocation_city, g.geolocation_state
FROM orders_cte o
LEFT JOIN customer_cte c ON o.customer_id = c.customer_id
LEFT JOIN geolocation_cte g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix;

--
-
- Cities and States of customers ordered during the given period using Common Table Expression (
CTE)
WITH orders_cte AS (
 SELECT DISTINCT customer_city, customer_state
 FROM target_business.orders o
 JOIN target_business.customers c ON o.customer_id = c.customer_id
 JOIN target_business.geolocation g ON c.customer_zip_code_prefix = g.geolocation_zip_code_pref
ix
 WHERE o.order_purchase_timestamp BETWEEN '2016-09-04 21:15:19 UTC' AND '2018-10-
17 17:30:18 UTC'
)
SELECT customer_city, customer_state
FROM orders_cte
ORDER BY customer_state, customer_city;

SELECT city, state
FROM customer_orders
WHERE order_date BETWEEN 'start_date' AND 'end_date'
GROUP BY city, state
ORDER BY state, city;

SELECT DISTINCT customer_city, customer_state
FROM target_business.orders o
JOIN target_business.customers c ON o.customer_id = c.customer_id
-- JOIN geolocations g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
WHERE o.order_purchase_timestamp BETWEEN '2016-09-04 21:15:19 UTC' AND '2018-10-17 17:30:18 UTC'
ORDER BY customer_state, customer_city;

SELECT DISTINCT customer_city, customer_state
FROM target_business.orders o
JOIN target_business.customers c ON o.customer_id = c.customer_id
JOIN target_business.geolocation g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
WHERE o.order_purchase_timestamp BETWEEN '2016-09-04 21:15:19 UTC' AND '2018-10-17 17:30:18 UTC'
ORDER BY customer_state, customer_city;

-- 1. Is there a growing trend on e-
commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with pe
aks at specific months?

61 | P a g e

WITH customer_locations AS (
 SELECT
 c.customer_unique_id,
 c.customer_zip_code_prefix,
 c.customer_city,
 c.customer_state
 FROM `target_business.customers` c
),
seller_locations AS (
 SELECT
 seller_id,
 seller_zip_code_prefix,
 seller_city,
 seller_state
 FROM `target-business-case-382621.target_business.sellers` s
),
order_items_info AS (
 SELECT
 oi.order_id,
 oi.order_item_id,
 oi.product_id,
 oi.seller_id,
 oi.price,
 oi.freight_value
 FROM `target-business-case-382621.target_business.order_items` oi
),
orders_info AS (
 SELECT
 o.order_id,
 --c.customer_unique_id,
 o.customer_id,
 o.order_purchase_timestamp,
 o.order_delivered_customer_date
 FROM `target-business-case-382621.target_business.orders` o
),
payments_info AS (
 SELECT
 pa.order_id,
 pa.payment_type,
 pa.payment_installments,
 pa.payment_value
 FROM `target-business-case-382621.target_business.payments` pa
),
product_info AS (
 SELECT
 p.product_id,
 p.product_category
 FROM `target-business-case-382621.target_business.products` p
),
order_items_with_product_info AS (
 SELECT
 oi.order_id,
 oi.order_item_id,
 oi.product_id,
 oi.seller_id,
 oi.price,
 oi.freight_value,
 pi.product_category
 FROM order_items_info AS oi
 JOIN product_info AS pi
 ON oi.product_id = pi.product_id

62 | P a g e

),
orders_with_payment_info AS (
 SELECT
 oi.order_id,
 oi.product_category,
 oi.price,
 oi.freight_value,
 pi.payment_type,
 pi.payment_installments,
 pi.payment_value
 FROM order_items_with_product_info AS oi
 JOIN payments_info AS pi
 ON oi.order_id = pi.order_id
),
orders_with_customer_info AS (
 SELECT
 oi.order_id,
 oi.product_category,
 oi.price,
 oi.freight_value,
 pi.payment_type,
 pi.payment_installments,
 pi.payment_value,
 ci.customer_state,
 ci.customer_city
 FROM orders_with_payment_info AS oi
 JOIN customer_locations AS ci
 ON oi.order_id = ci.customer_unique_id
),
orders_with_seller_info AS (
 SELECT
 oi.order_id,
 oi.product_category,
 oi.price,
 oi.freight_value,
 pi.payment_type,
 pi.payment_installments,
 pi.payment_value,
 oi.seller_id,
 si.seller_state,
 si.seller_city
 FROM orders_with_customer_info AS oi
 JOIN seller_locations AS si
 ON oi.seller_id = si.seller_id
),
orders_with_dates AS (
 SELECT
 o.order_id,
 o.product_category,
 o.price,
 o.freight_value,
 o.payment_type,
 o.payment_installments,
 o.payment_value,
 o.customer_state,
 o.customer_city,
 o.seller_state,
 o.seller_city,
 o.order_purchase_timestamp,
 o.order_delivered_customer_date,
 EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month

63 | P a g e

 FROM orders_with_seller_info AS o
),
monthly_orders AS (
 SELECT
 order_month,
 COUNT(DISTINCT order_id) AS num_orders,
 SUM(price) AS total_revenue,
 SUM(freight_value) AS total_freight,
 SUM(payment_value) AS total_payment,
 COUNT(DISTINCT customer_city) AS num_cities,
 COUNT(DISTINCT seller_city) AS num_seller_cities
 FROM orders_with_dates
 GROUP BY order_month
)
SELECT
 order_month,;

WITH customer_locations AS (
 SELECT
 customer_unique_id,
 customer_zip_code_prefix,
 customer_city,
 customer_state
 FROM `target_business.customers`
),
seller_locations AS (
 SELECT
 seller_id,
 seller_zip_code_prefix,
 seller_city,
 seller_state
 FROM `target_business.sellers`
),
order_items_info AS (
 SELECT
 order_id,
 order_item_id,
 product_id,
 seller_id,
 price,
 freight_value
 FROM `target_business.order_items`
),
orders_info AS (
 SELECT
 order_id,
 --customer_unique_id,
 customer_id,
 order_purchase_timestamp,
 order_delivered_customer_date
 FROM `target_business.orders`
),
payments_info AS (
 SELECT
 order_id,
 payment_type,
 payment_installments,
 payment_value
 FROM `target_business.payments`

64 | P a g e

),
product_info AS (
 SELECT
 product_id,
 product_category
 FROM `target_business.products`
),
order_items_with_product_info AS (
 SELECT
 oi.order_id,
 oi.order_item_id,
 oi.product_id,
 oi.seller_id,
 oi.price,
 oi.freight_value,
 pi.product_category
 FROM order_items_info AS oi
 JOIN product_info AS pi
 ON oi.product_id = pi.product_id
),
orders_with_payment_info AS (
 SELECT
 oi.order_id,
 oi.product_category,
 oi.price,
 oi.freight_value,
 pi.payment_type,
 pi.payment_installments,
 pi.payment_value
 FROM order_items_with_product_info AS oi
 JOIN payments_info AS pi
 ON oi.order_id = pi.order_id
),
orders_with_customer_info AS (
 SELECT
 oi.order_id,
 oi.product_category,
 oi.price,
 oi.freight_value,
 pi.payment_type,
 pi.payment_installments,
 pi.payment_value,
 ci.customer_state,
 ci.customer_city
 FROM orders_with_payment_info AS oi
 JOIN customer_locations AS ci
 ON oi.order_id = ci.customer_unique_id
),
orders_with_seller_info AS (
 SELECT
 oi.order_id,
 oi.product_category,
 oi.price,
 oi.freight_value,
 pi.payment_type,
 pi.payment_installments,
 pi.payment_value,
 oi.seller_id,
 si.seller_state,
 si.seller_city
 FROM orders_with_customer_info AS oi

65 | P a g e

 JOIN seller_locations AS si
 ON oi.seller_id = si.seller_id
),
orders_with_dates AS (
 SELECT
 o.order_id,
 o.product_category,
 o.price,
 o.freight_value,
 o.payment_type,
 o.payment_installments,
 o.payment_value,
 o.customer_state,
 o.customer_city,
 o.seller_state,
 o.seller_city,
 o.order_purchase_timestamp,
 o.order_delivered_customer_date,
 EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month
 FROM orders_with_seller_info AS o
),
monthly_orders AS (
 SELECT
 order_month,
 COUNT(DISTINCT order_id) AS num_orders,
 SUM(price) AS total_revenue,
 SUM(freight_value) AS total_freight,
 SUM(payment_value) AS total_payment,
 COUNT(DISTINCT customer_city) AS num_cities,
 COUNT(DISTINCT seller_city) AS num_seller_cities
 FROM orders_with_dates
 GROUP BY order_month
)
SELECT
 order_month,;

--

--UPDATE `target_business.products`
--SET product_category_name = product_category
--WHERE TRUE;
SELECT
EXTRACT(MONTH FROM order_purchase_timestamp) AS month
FROM
`target-business-case-382621.target_business.orders`;

-- Breaking Down Brazil's E-commerce Boom:
-- Seasonal Peaks and Complete Trends
SELECT
 EXTRACT(MONTH FROM order_purchase_timestamp) AS month,
 COUNT(DISTINCT o.order_id) AS num_orders,
 SUM(oi.price + oi.freight_value) AS revenue
FROM
 `target-business-case-382621.target_business.orders` o
 JOIN `target-business-case-382621.target_business.order_items` oi ON o.order_id = oi.order_id
 JOIN `target-business-case-
382621.target_business.customers` c ON o.customer_id = c.customer_id

66 | P a g e

 JOIN `target-business-case-
382621.target_business.geolocation` g ON c.customer_zip_code_prefix = g.geolocation_zip_code_pre
fix
WHERE
 g.geolocation_state = 'SP'
GROUP BY
 month
ORDER BY
 month ASC;

--
SELECT
EXTRACT(MONTH FROM order_purchase_timestamp) AS month
FROM
`target-business-case-382621.target_business.orders`;

--

SELECT DATE_TRUNC('week', order_purchase_timestamp) as week, COUNT(*) as num_orders
FROM `target-business-case-382621.target_business.orders`
GROUP BY week;

SELECT
 DATE_TRUNC('month', order_purchase_timestamp) AS month
FROM
 `target-business-case-382621.target_business.orders`;

SELECT
 MONTH(order_purchase_timestamp) AS ProducedMonth
FROM
 `target-business-case-382621.target_business.orders`;

 WITH orders_and_customers AS (
 SELECT
 o.order_id,
 o.customer_id,
 c.customer_city,
 c.customer_state,
 TIMESTAMP_TRUNC(o.order_purchase_timestamp, HOUR) AS order_hour
 FROM
 `your_project_id.orders` AS o
 JOIN
 `your_project_id.customers` AS c
 ON
 o.customer_id = c.customer_id
), orders_and_customers_and_geolocation AS (
 SELECT
 oac.order_id,
 oac.customer_id,
 oac.customer_city,
 oac.customer_state,
 oac.order_hour,
 g.geolocation_city
 FROM
 orders_and_customers AS oac
 JOIN
 `your_project_id.geolocations` AS g
 ON

67 | P a g e

 oac.customer_zip_code_prefix = g.geolocation_zip_code_prefix
), orders_and_customers_and_geolocation_and_payments AS (
 SELECT
 ocg.order_id,
 ocg.customer_id,
 ocg.customer_city,
 ocg.customer_state,
 ocg.order_hour,
 ocg.geolocation_city,
 p.payment_installments,
 TIMESTAMP_TRUNC(ocg.order_hour, DAY) AS order_day
 FROM
 orders_and_customers_and_geolocation AS ocg
 JOIN
 `your_project_id.payments` AS p
 ON
 ocg.order_id = p.order_id
), orders_and_customers_and_geolocation_and_payments_and_order_items AS (
 SELECT
 ocgp.order_id,
 ocgp.customer_id,
 ocgp.customer_city,
 ocgp.customer_state,
 ocgp.order_hour,
 ocgp.geolocation_city,
 ocgp.payment_installments,
 ocgp.order_day,
 oi.price,
 oi.freight_value
 FROM
 orders_and_customers_and_geolocation_and_payments AS ocgp
 JOIN
 `your_project_id.order_items` AS oi
 ON
 ocgp.order_id = oi.order_id
)
SELECT
 CASE
 WHEN order_hour BETWEEN TIMESTAMP('2023-04-07 00:00:00', 'UTC') AND TIMESTAMP('2023-04-
07 06:00:00', 'UTC') THEN 'Dawn'
 WHEN order_hour BETWEEN TIMESTAMP('2023-04-07 06:00:00', 'UTC') AND TIMESTAMP('2023-04-
07 12:00:00', 'UTC') THEN 'Morning'
 WHEN order_hour BETWEEN TIMESTAMP('2023-04-07 12:00:00', 'UTC') AND TIMESTAMP('2023-04-
07 18:00:00', 'UTC') THEN 'Afternoon'
 ELSE 'Night'
 END AS time_of_day,
 COUNT(DISTINCT order_id) AS num_orders,
 AVG(price + freight_value) AS avg_order_amount
FROM
 orders_and_customers_and_geolocation_and_payments_and_order_items
WHERE
 customer_state = 'SP' -- change this to the desired state code
 AND payment_installments = 1 -- only consider non-EMI purchases
GROUP BY
 time_of_day
ORDER BY
 time_of_day;
--

WITH orders_and_customers AS (
 SELECT

68 | P a g e

 o.order_id,
 o.customer_id,
 c.customer_city,
 c.customer_state,
 TIMESTAMP_TRUNC(o.order_purchase_timestamp, HOUR) AS order_hour
 FROM
 `your_project_id.orders` AS o
 JOIN
 `your_project_id.customers` AS c
 ON
 o.customer_id = c.customer_id
), orders_and_customers_and_geolocation AS (
 SELECT
 oac.order_id,
 oac.customer_id,
 oac.customer_city,
 oac.customer_state,
 oac.order_hour,
 g.geolocation_city
 FROM
 orders_and_customers AS oac
 JOIN
 `your_project_id.geolocations` AS g
 ON
 oac.customer_zip_code_prefix = g.geolocation_zip_code_prefix
), orders_and_customers_and_geolocation_and_payments AS (
 SELECT
 ocg.order_id,
 ocg.customer_id,
 ocg.customer_city,
 ocg.customer_state,
 ocg.order_hour,
 ocg.geolocation_city,
 p.payment_installments,
 TIMESTAMP_TRUNC(ocg.order_hour, DAY) AS order_day
 FROM
 orders_and_customers_and_geolocation AS ocg
 JOIN
 `your_project_id.payments` AS p
 ON
 ocg.order_id = p.order_id
), orders_and_customers_and_geolocation_and_payments_and_order_items AS (
 SELECT
 ocgp.order_id,
 ocgp.customer_id,
 ocgp.customer_city,
 ocgp.customer_state,
 ocgp.order_hour,
 ocgp.geolocation_city,
 ocgp.payment_installments,
 ocgp.order_day,
 oi.price,
 oi.freight_value
 FROM
 orders_and_customers_and_geolocation_and_payments AS ocgp
 JOIN
 `your_project_id.order_items` AS oi
 ON
 ocgp.order_id = oi.order_id
)
SELECT

69 | P a g e

 CASE
 WHEN order_hour BETWEEN TIMESTAMP('2023-04-07 00:00:00', 'UTC') AND TIMESTAMP('2023-04-
07 06:00:00', 'UTC') THEN 'Dawn'
 WHEN order_hour BETWEEN TIMESTAMP('2023-04-07 06:00:00', 'UTC') AND TIMESTAMP('2023-04-
07 12:00:00', 'UTC') THEN 'Morning'
 WHEN order_hour BETWEEN TIMESTAMP('2023-04-07 12:00:00', 'UTC') AND TIMESTAMP('2023-04-
07 18:00:00', 'UTC') THEN 'Afternoon'
 ELSE 'Night'
 END AS time_of_day,
 COUNT(DISTINCT order_id) AS num_orders,
 AVG(price + freight_value) AS avg_order_amount
FROM
 orders_and_customers_and_geolocation_and_payments_and_order_items
WHERE
 customer_state = 'SP' -- change this to the desired state code
 AND payment_installments = 1 -- only consider non-EMI purchases
GROUP BY
 time_of_day
ORDER BY
 time_of_day;

--

-- Breaking Down Brazil's E-commerce Boom:
-- Seasonal Peaks and Complete Trends
SELECT
 EXTRACT(HOUR FROM order_purchase_timestamp) AS purchase_hour,
 COUNT(*) AS total_orders
FROM
 `target-business-case-382621.target_business.orders` AS o
 JOIN `target-business-case-
382621.target_business.customers` AS c ON o.customer_id = c.customer_id
WHERE
 c.customer_state = 'SP' -- Select only orders from Sao Paulo state
GROUP BY
 purchase_hour
ORDER BY
 purchase_hour;

--
-- Evolution of E-commerce orders in the Brazil region:

-- Get month on month orders by states
SELECT
 EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month,
 -- DATE_TRUNC('month', o.order_purchase_timestamp) AS order_month,
 c.customer_state,
 COUNT(DISTINCT o.order_id) AS order_count
FROM
 target_business.orders o
 JOIN target_business.customers c ON o.customer_id = c.customer_id
WHERE
 o.order_purchase_timestamp >= '2016-09-
04 21:15:19 UTC' AND o.order_purchase_timestamp < '2018-10-17 17:30:18 UTC'
GROUP BY
 order_month,
 c.customer_state
ORDER BY
 order_month,
 c.customer_state;

70 | P a g e

--From North to South: Exploring Customer Distribution in Brazil

SELECT c.customer_state, COUNT(c.customer_id) as customer_count
FROM target_business.customers c
JOIN target_business.geolocation g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
GROUP BY c.customer_state
ORDER BY customer_count DESC;

SELECT
 ROUND(((SUM(p2.payment_value) - SUM(p1.payment_value)) / SUM(p1.payment_value)) * 100, 2) AS
 percentage_increase
FROM
 target_business.payments p1
JOIN
 target_business.payments p2 ON p1.order_id = p2.order_id
WHERE
 DATE_TRUNC('month', p1.order_purchase_timestamp) >= '2017-01-01'
 AND DATE_TRUNC('month', p1.order_purchase_timestamp) <= '2017-08-31'
 AND DATE_TRUNC('month', p2.order_purchase_timestamp) >= '2018-01-01'
 AND DATE_TRUNC('month', p2.order_purchase_timestamp) <= '2018-08-31';

-- EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month,
 --DATE_TRUNC('month', p1.order_purchase_timestamp) >= '2017-01-01'
 --AND DATE_TRUNC('month', p1.order_purchase_timestamp) <= '2017-08-31'
 --AND DATE_TRUNC('month', p2.order_purchase_timestamp) >= '2018-01-01'
 --AND DATE_TRUNC('month', p2.order_purchase_timestamp) <= '2018-08-31';
--

with A as
(Select extract(year from o.order_purchase_timestamp) as yr, sum(p.payment_value) as cost_of_ord
ers
from target_business.orders o join target_business.payments p
on o.order_id = p.order_id
where extract(month from o.order_purchase_timestamp) between 1 and 8
group by 1)
Select ((a2.cost_of_orders/a1.cost_of_orders) - 1)*100 as perc_increase
from A as a1, A as a2
where a1.yr = 2017 and a2.yr = 2018;

--- From 2017 to 2018: Calculating the Percentage Increase in Order Costs
WITH A AS
(
 SELECT
 EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
 SUM(p.payment_value) as cost_of_orders
 FROM
 target_business.orders o
 JOIN
 target_business.payments p ON o.order_id = p.order_id
 WHERE
 EXTRACT(month FROM o.order_purchase_timestamp) BETWEEN 1 AND 8
 GROUP BY
 1
)
SELECT
 ROUND(((a2.cost_of_orders / a1.cost_of_orders) - 1) * 100, 2) as perc_increase
FROM

71 | P a g e

 A as a1, A as a2
WHERE
 a1.year = 2017 AND a2.year = 2018;

with A AS
(SELECT
 EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
 SUM(p.payment_value) as cost_of_orders
FROM
 target_business.orders o
JOIN
 target_business.payments p ON o.order_id = p.order_id
WHERE
 EXTRACT(month FROM o.order_purchase_timestamp) between 1 and 8
GROUP BY
 1)
SELECT
((a2.cost_of_orders/a1.cost_of_orders) - 1)*100 as perc_increase
FROM
 A as a1, A as a2
WHERE a1.year = 2017 and a2.year = 2018;

-- State-wise E-commerce Insights: Mean and Sum of Price and Freight Values
-- Common Table Expression (CTE) to retrieve order items data
WITH order_items_cte AS (
 SELECT order_id, price, freight_value
 FROM target_business.order_items
), customers_cte AS (
 SELECT customer_id, customer_state
 FROM target_business.customers c
), combined_data AS (
 SELECT c.customer_state, oi.price, oi.freight_value
 FROM order_items_cte oi
 INNER JOIN target_business.orders o ON oi.order_id = o.order_id
 INNER JOIN customers_cte c ON o.customer_id = c.customer_id
)
SELECT customer_state, AVG(price) AS mean_price, SUM(price) AS sum_price, AVG(freight_value) AS
mean_freight_value, SUM(freight_value) AS sum_freight_value
FROM combined_data
GROUP BY customer_state;
--SELECT * from order_items_cte

-- State-wise E-commerce Insights: Mean and Sum of Price and Freight Values
-- Common Table Expression (CTE) to retrieve order items data
WITH order_items_cte AS (
 SELECT order_id, price, freight_value
 FROM target_business.order_items
),

-- Common Table Expression (CTE) to retrieve customers data
customers_cte AS (
 SELECT customer_id, customer_state
 FROM target_business.customers c
),

-- Common Table Expression (CTE) to combine data from order_items_cte, orders, and customers_cte
combined_data AS (
 SELECT c.customer_state, oi.price, oi.freight_value
 FROM order_items_cte oi
 INNER JOIN target_business.orders o ON oi.order_id = o.order_id

72 | P a g e

 INNER JOIN customers_cte c ON o.customer_id = c.customer_id
)

-- Main query to calculate mean and sum for each customer state
SELECT customer_state,
 AVG(price) AS mean_price,
 SUM(price) AS sum_price,
 AVG(freight_value) AS mean_freight_value,
 SUM(freight_value) AS sum_freight_value
FROM combined_data
GROUP BY customer_state;
--
--Analysis on sales, freight and delivery time
--Calculate days between purchasing, delivering and estimated delivery
WITH order_info AS (
 SELECT
 o.order_id,
 o.order_purchase_timestamp,
 o.order_delivered_carrier_date,
 o.order_delivered_customer_date,
 o.order_estimated_delivery_date
 FROM
 target_business.orders o
)
, order_delays AS (
 SELECT
 order_id,
 DATE_DIFF(order_delivered_carrier_date, order_purchase_timestamp, DAY) AS carrier_delay,
 DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS customer_delay,
 DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY) AS estimated_deliver
y_delay
 FROM
 order_info
)
SELECT
 order_id,
 carrier_delay,
 customer_delay,
 estimated_delivery_delay
FROM
 order_delays;

--
--
-- 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
-- o time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
-- o diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

WITH order_data AS (
 SELECT
 order_id,
 order_purchase_timestamp,
 order_delivered_customer_date,
 order_estimated_delivery_date
 FROM
 `target_business.orders`
)
SELECT
 order_id,

73 | P a g e

 TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, HOUR) AS time_to_deliv
ery,
 TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, HOUR) AS diff_est
imated_delivery
FROM
 order_data;

-- Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
WITH order_stats AS (
 SELECT
 c.customer_state AS state,
 AVG(oi.freight_value) AS avg_freight_value,
 AVG(date_diff(o.order_delivered_customer_date, o.order_purchase_timestamp, day)) AS avg_tim
e_to_delivery,
 AVG(date_diff(o.order_estimated_delivery_date, o.order_delivered_customer_date, day)) AS avg
_diff_estimated_delivery
 FROM
 target_business.customers c
 JOIN
 target_business.orders o ON c.customer_id = o.customer_id
 JOIN
 target_business.order_items oi ON o.order_id = oi.order_id
 GROUP BY
 state
)
SELECT
 state,
 avg_freight_value,
 avg_time_to_delivery,
 avg_diff_estimated_delivery
FROM
 order_stats
ORDER BY
 state;

--

-- 5. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5
WITH state_freight_avg AS (
 SELECT
 c.customer_state AS state,
 AVG(oi.freight_value) AS avg_freight
 FROM
 target_business.customers c
 JOIN
 target_business.orders o ON c.customer_id = o.customer_id
 JOIN
 target_business.order_items oi ON o.order_id = oi.order_id
 GROUP BY
 c.customer_state
)
SELECT
 state,
 avg_freight
FROM (
 SELECT
 state,
 avg_freight,
 ROW_NUMBER() OVER (ORDER BY avg_freight DESC) AS rn_desc,
 ROW_NUMBER() OVER (ORDER BY avg_freight ASC) AS rn_asc

74 | P a g e

 FROM
 state_freight_avg
)
WHERE
 rn_desc <= 5 OR rn_asc <= 5
ORDER BY
 avg_freight DESC, state ASC;
-- 5. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5
WITH freight_avg_by_state AS (
 SELECT
 c.customer_state AS state,
 AVG(oi.freight_value) AS avg_freight
 FROM
 target_business.customers c
 INNER JOIN
 target_business.orders o ON c.customer_id = o.customer_id
 INNER JOIN
 target_business.order_items oi ON o.order_id = oi.order_id
 GROUP BY
 state
)
SELECT
 state,
 avg_freight
FROM
 freight_avg_by_state
ORDER BY
 avg_freight DESC
LIMIT
 5; -- Top 5 states with highest average freight value

WITH freight_avg_by_state AS (
 SELECT
 c.customer_state AS state,
 AVG(oi.freight_value) AS avg_freight
 FROM
 target_business.customers c
 INNER JOIN
 target_business.orders o ON c.customer_id = o.customer_id
 INNER JOIN
 target_business.order_items oi ON o.order_id = oi.order_id
 GROUP BY
 state
)
SELECT
 state,
 avg_freight
FROM
 freight_avg_by_state
ORDER BY
 avg_freight ASC
LIMIT
 5; -- Top 5 states with lowest average freight value

--
WITH avg_freight AS (
 SELECT
 c.customer_state AS state,
 AVG(oi.freight_value) AS avg_freight
 FROM
 `target_business.customers` c

75 | P a g e

 JOIN
 `target_business.orders` o ON c.customer_id = o.customer_id
 JOIN
 `target_business.order_items` oi ON o.order_id = oi.order_id
 GROUP BY
 state
)
SELECT
 state,
 avg_freight
FROM
 avg_freight
ORDER BY
 avg_freight DESC
LIMIT
 5

-- The above query finds the top 5 states with the highest average freight value

UNION ALL

SELECT
 state,
 avg_freight
FROM (
 SELECT
 state,
 avg_freight
 FROM
 avg_freight
 ORDER BY
 avg_freight ASC
 LIMIT
 5
)
ORDER BY
 avg_freight ASC;

-- The above query finds the bottom 5 states with the lowest average freight value
--
-- 7. Top 5 states with highest/lowest average time to delivery
WITH order_delivery_time AS (
 SELECT
 c.customer_state AS state,
 TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS delivery
_time
 FROM
 target_business.orders o
 JOIN
 target_business.customers c ON o.customer_id = c.customer_id
)
, avg_delivery_time AS (
 SELECT
 state,
 AVG(delivery_time) AS avg_time
 FROM
 order_delivery_time
 GROUP BY
 state
)
SELECT

76 | P a g e

 state,
 avg_time
FROM (
 SELECT
 state,
 avg_time,
 ROW_NUMBER() OVER (ORDER BY avg_time DESC) AS rank_desc,
 ROW_NUMBER() OVER (ORDER BY avg_time ASC) AS rank_asc
 FROM
 avg_delivery_time
)
WHERE
 rank_desc <= 5 OR rank_asc <= 5
ORDER BY
 rank_desc ASC,
 rank_asc ASC;

-- Top 5 states where delivery is really fast/ not so fast compared to estimated date

WITH order_delivery AS (
 SELECT
 o.order_id,
 o.order_status,
 o.order_purchase_timestamp,
 o.order_delivered_carrier_date,
 o.order_delivered_customer_date,
 o.order_estimated_delivery_date,
 c.customer_state AS state
 FROM
 target_business.orders o
 JOIN
 target_business.customers c
 ON
 o.customer_id = c.customer_id
)
SELECT
 state AS state,
 COUNT(*) AS total_orders,
 SUM(CASE
 WHEN order_status = 'delivered' AND order_delivered_customer_date <= order_estimated_deliv
ery_date THEN 1
 ELSE 0
 END) AS fast_deliveries,
 SUM(CASE
 WHEN order_status = 'delivered' AND order_delivered_customer_date > order_estimated_delive
ry_date THEN 1
 ELSE 0
 END) AS delayed_deliveries
FROM
 order_delivery
GROUP BY
 state
ORDER BY
 fast_deliveries DESC
LIMIT
 5;

--
-- Month over Month count of orders for different payment types
WITH monthly_orders AS (
 SELECT

77 | P a g e

 DATE_TRUNC(DATE(order_purchase_timestamp), MONTH) AS month,
 p.payment_type,
 COUNT(DISTINCT o.order_id) AS order_count
 FROM
 target_business.orders o
 INNER JOIN
 target_business.payments p ON o.order_id = p.order_id
 GROUP BY
 month,
 payment_type
)
SELECT
 month,
 payment_type,
 SUM(order_count) AS total_orders
FROM
 monthly_orders
GROUP BY
 month,
 payment_type
ORDER BY
 month,
 payment_type;

--

-- Count of orders based on the no. of payment instalments
WITH order_payments AS (
 SELECT
 o.order_id,
 p.payment_installments
 FROM
 target_business.orders o
 JOIN
 target_business.payments p ON o.order_id = p.order_id
)
SELECT
 payment_installments,
 COUNT(DISTINCT order_id) AS order_count
FROM
 order_payments
GROUP BY
 payment_installments;

--
WITH order_delivery_time AS (
 SELECT
 c.customer_state AS state,
 o.order_delivered_customer_date AS delivered_date,
 o.order_purchase_timestamp AS purchase_date
 FROM
 target_business.orders o
 JOIN
 target_business.customers c ON o.customer_id = c.customer_id
)
, delivery_time AS (
 SELECT
 state,
 TIMESTAMP_DIFF(delivered_date, purchase_date, DAY) AS delivery_days
 FROM
 order_delivery_time

78 | P a g e

)
, avg_delivery_time AS (
 SELECT
 state,
 AVG(delivery_days) AS avg_delivery_time
 FROM
 delivery_time
 GROUP BY
 state
)
, top_states AS (
 SELECT
 state,
 avg_delivery_time,
 RANK() OVER (ORDER BY avg_delivery_time DESC) AS rank_high,
 RANK() OVER (ORDER BY avg_delivery_time ASC) AS rank_low
 FROM
 avg_delivery_time
)
SELECT
 state,
 avg_delivery_time
FROM
 top_states
WHERE
 rank_high <= 5
ORDER BY
 avg_delivery_time DESC;

WITH order_delivery AS (
 SELECT
 o.order_id,
 o.customer_state,
 o.order_purchase_timestamp,
 o.order_delivered_customer_date,
 TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, HOUR) AS deliver
y_time
 FROM
 `target_business.orders` o
)
SELECT
 customer_state AS state,
 AVG(delivery_time) AS avg_delivery_time
FROM
 order_delivery
GROUP BY
 customer_state
ORDER BY
 avg_delivery_time DESC
LIMIT
 5 -- Top 5 states with highest average time to delivery

--

WITH orders_info AS (
 SELECT
 o.order_id,

79 | P a g e

 o.customer_state,
 o.order_purchase_timestamp,
 o.order_delivered_customer_date,
 TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, HOUR) AS time_to
_delivery
 FROM
 `your_dataset.orders` o
)
SELECT
 state,
 AVG(time_to_delivery) AS avg_time_to_delivery
FROM
 orders_info
GROUP BY
 state
ORDER BY
 avg_time_to_delivery DESC
LIMIT 5 -- Top 5 states with highest average time to delivery

--
SELECT customer_state, AVG(freight_value) AS avg_freight_value
FROM target_business.orders
GROUP BY customer_state
ORDER BY avg_freight_value DESC
LIMIT 5;

SELECT customer_state, AVG(freight_value) AS avg_freight_value
FROM target_business.orders
GROUP BY customer_state
ORDER BY avg_freight_value ASC
LIMIT 5;

SELECT
 c.customer_state AS state,
 FROM
 target_business.customers c;

--

WITH order_data AS (
 SELECT
 order_id,
 order_purchase_timestamp,
 order_delivered_customer_date,
 order_estimated_delivery_date
 FROM
 `target_business.orders` -- Replace with your actual project and dataset name
)
SELECT
 order_id,
 TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, HOUR) AS time_to_deliv
ery,
 TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, HOUR) AS diff_est
imated_delivery
FROM
 order_data;

--

80 | P a g e

WITH order_data AS (
 SELECT
 o.order_id,
 o.order_purchase_timestamp,
 o.order_delivered_customer_date,
 o.order_estimated_delivery_date,
 o.customer_state,
 oi.freight_value,
 TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, HOUR) AS time_to
_delivery,
 TIMESTAMP_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, HOUR) AS di
ff_estimated_delivery
 FROM
 `target_business.orders` AS o
 JOIN
 `target_business.order_items` AS oi
 ON
 o.order_id = oi.order_id
)
SELECT
 customer_state,
 AVG(freight_value) AS avg_freight_value,
 AVG(time_to_delivery) AS avg_time_to_delivery,
 AVG(diff_estimated_delivery) AS avg_diff_estimated_delivery
FROM
 order_data
GROUP BY
 customer_state;

--

WITH order_stats AS (
 SELECT
 --o.customer_state AS state,
 AVG(oi.freight_value) AS avg_freight_value,
 AVG(DATEDIFF(o.order_delivered_customer_date, o.order_purchase_timestamp)) AS avg_time_to_de
livery,
 AVG(DATEDIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date)) AS avg_diff_
estimated_delivery
 FROM
 target_business.orders o
 JOIN
 target_business.order_items oi ON o.order_id = oi.order_id
 GROUP BY
 state
)
SELECT
 state,
 avg_freight_value,
 avg_time_to_delivery,
 avg_diff_estimated_delivery
FROM
 target_business.order_stats
ORDER BY
 state;

--

WITH order_stats AS (
 SELECT

81 | P a g e

 c.customer_state AS state,
 AVG(oi.freight_value) AS avg_freight_value,
 AVG(DATEDIFF(o.order_delivered_customer_date, o.order_purchase_timestamp)) AS avg_time_to_de
livery,
 AVG(DATEDIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date)) AS avg_diff_
estimated_delivery
 FROM
 target_business.customers c
 JOIN
 target_business.orders o ON c.customer_id = o.customer_id
 JOIN
 target_business.order_items oi ON o.order_id = oi.order_id
 GROUP BY
 state
)
SELECT
 state,
 avg_freight_value,
 avg_time_to_delivery,
 avg_diff_estimated_delivery
FROM
 order_stats
ORDER BY
 state;
--

WITH order_stats AS (
 SELECT
 c.customer_state AS state,
 AVG(oi.freight_value) AS avg_freight_value,
 AVG(date_diff('day', o.order_purchase_timestamp, o.order_delivered_customer_date)) AS avg_ti
me_to_delivery,
 AVG(date_diff('day', o.order_delivered_customer_date, o.order_estimated_delivery_date)) AS a
vg_diff_estimated_delivery
 FROM
 target_business.customers c
 JOIN
 target_business.orders o ON c.customer_id = o.customer_id
 JOIN
 target_business.order_items oi ON o.order_id = oi.order_id
 GROUP BY
 state
)
SELECT
 state,
 avg_freight_value,
 avg_time_to_delivery,
 avg_diff_estimated_delivery
FROM
 order_stats
ORDER BY
 state;

--

WITH order_delivery AS (
 SELECT
 o.order_id,
 o.order_purchase_timestamp,
 o.order_delivered_carrier_date,

82 | P a g e

 o.order_delivered_customer_date,
 o.order_estimated_delivery_date
 FROM
 target_business.orders o
)
SELECT
 order_id,
 order_purchase_timestamp,
 order_delivered_carrier_date,
 order_delivered_customer_date,
 order_estimated_delivery_date,
 DATE_PART('day', order_delivered_carrier_date::timestamp - order_purchase_timestamp::timestamp
) AS days_between_purchasing_and_delivering,
 DATE_PART('day', order_delivered_customer_date::timestamp - order_purchase_timestamp::timestam
p) AS days_between_purchasing_and_delivered,
 DATE_PART('day', order_estimated_delivery_date::timestamp - order_purchase_timestamp::timestam
p) AS days_between_purchasing_and_estimated_delivery
FROM
 order_delivery;

--end--

WITH order_delivery AS (
 SELECT
 o.order_id,
 o.order_purchase_timestamp,
 o.order_delivered_carrier_date,
 o.order_delivered_customer_date,
 o.order_estimated_delivery_date
 FROM
 target_business.orders o
)
SELECT
 order_id,
 order_purchase_timestamp,
 order_delivered_carrier_date,
 order_delivered_customer_date,
 order_estimated_delivery_date,
 DATE_PART('day', order_delivered_carrier_date::date - order_purchase_timestamp::date) AS days_
between_purchasing_and_delivering,
 DATE_PART('day', order_delivered_customer_date::date - order_purchase_timestamp::date) AS days
_between_purchasing_and_delivered,
 DATE_PART('day', order_estimated_delivery_date::date - order_purchase_timestamp::date) AS days
_between_purchasing_and_estimated_delivery
FROM
 order_delivery;

WITH order_delivery AS (
 SELECT
 o.order_id,
 o.order_purchase_timestamp,
 o.order_delivered_carrier_date,
 o.order_delivered_customer_date,
 o.order_estimated_delivery_date
 FROM
 target_business.orders o

83 | P a g e

)
SELECT
 order_id,
 order_purchase_timestamp,
 order_delivered_carrier_date,
 order_delivered_customer_date,
 order_estimated_delivery_date,
 EXTRACT(EPOCH FROM (order_delivered_carrier_date - order_purchase_timestamp)) / 86400 AS days_
between_purchasing_and_delivering,
 EXTRACT(EPOCH FROM (order_delivered_customer_date - order_purchase_timestamp)) / 86400 AS days
_between_purchasing_and_delivered,
 EXTRACT(EPOCH FROM (order_estimated_delivery_date - order_purchase_timestamp)) / 86400 AS days
_between_purchasing_and_estimated_delivery
FROM
 order_delivery;
--
WITH order_delivery AS (
 SELECT
 o.order_id,
 o.order_purchase_timestamp,
 o.order_delivered_carrier_date,
 o.order_delivered_customer_date,
 o.order_estimated_delivery_date
 FROM
 target_business.orders o
)
SELECT
 order_id,
 order_purchase_timestamp,
 order_delivered_carrier_date,
 order_delivered_customer_date,
 order_estimated_delivery_date,
 DATE_PART('day', order_delivered_carrier_date - order_purchase_timestamp) AS days_between_purc
hasing_and_delivering,
 DATE_PART('day', order_delivered_customer_date - order_purchase_timestamp) AS days_between_pur
chasing_and_delivered,
 DATE_PART('day', order_estimated_delivery_date - order_purchase_timestamp) AS days_between_pur
chasing_and_estimated_delivery
FROM
 order_delivery;

WITH order_delivery AS (
 SELECT
 o.order_id,
 o.order_purchase_timestamp,
 o.order_delivered_carrier_date,
 o.order_delivered_customer_date,
 o.order_estimated_delivery_date
 FROM
 target_business.orders o
)
SELECT
 order_id,
 order_purchase_timestamp,
 order_delivered_carrier_date,
 order_delivered_customer_date,
 order_estimated_delivery_date,
 (order_delivered_carrier_date::date - order_purchase_timestamp::date) AS days_between_purchasi
ng_and_delivering,
 (order_delivered_customer_date::date - order_purchase_timestamp::date) AS days_between_purchas
ing_and_delivered,

84 | P a g e

 (order_estimated_delivery_date::date - order_purchase_timestamp::date) AS days_between_purchas
ing_and_estimated_delivery
FROM
 order_delivery;

--

WITH order_delivery AS (
 SELECT
 o.order_id,
 o.order_purchase_timestamp,
 o.order_delivered_carrier_date,
 o.order_delivered_customer_date,
 o.order_estimated_delivery_date
 FROM
 target_business.orders o
)
SELECT
 order_id,
 order_purchase_timestamp,
 order_delivered_carrier_date,
 order_delivered_customer_date,
 order_estimated_delivery_date,
 DATE_PART('day', order_delivered_carrier_date - order_purchase_timestamp) AS days_between_purc
hasing_and_delivering,
 DATE_PART('day', order_delivered_customer_date - order_purchase_timestamp) AS days_between_pur
chasing_and_delivered,
 DATE_PART('day', order_estimated_delivery_date - order_purchase_timestamp) AS days_between_pur
chasing_and_estimated_delivery
FROM
 order_delivery;

-- end
-- not working
SELECT
 EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
 EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
 SUM(p.payment_value) AS total_payment_value_2017,
 SUM(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018 THEN p.payment_value ELSE
 0 END) AS total_payment_value_2018,
 ((SUM(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018 THEN p.payment_value EL
SE 0 END) - SUM(p.payment_value)) / SUM(p.payment_value)) * 100 AS percentage_increase
FROM
 target_business.orders o
JOIN
 target_business.payments p ON o.order_id = p.order_id
WHERE
 EXTRACT(YEAR FROM o.order_purchase_timestamp) IN (2017, 2018)
 AND EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND 8
GROUP BY
 EXTRACT(YEAR FROM o.order_purchase_timestamp),
 EXTRACT(MONTH FROM o.order_purchase_timestamp)
ORDER BY
 EXTRACT(YEAR FROM o.order_purchase_timestamp),
 EXTRACT(MONTH FROM o.order_purchase_timestamp);

--
SELECT
 EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year_2017,

85 | P a g e

 EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year_2018,
 ROUND(((SUM(p1.payment_value) - SUM(p1.payment_value)) / SUM(p1.payment_value)) * 100, 2) AS
 percentage_increase
FROM
 -- target_business.payments p1
 target_business.orders o
JOIN
 target_business.payments p1 ON p1.order_id = o1.order_id
WHERE
 EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2017
 AND EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018
 AND EXTRACT(MONTH FROM p1.order_purchase_timestamp) BETWEEN 1 AND 8
 AND EXTRACT(MONTH FROM p2.order_purchase_timestamp) BETWEEN 1 AND 8
GROUP BY
 EXTRACT(YEAR FROM o1.order_purchase_timestamp),
 EXTRACT(YEAR FROM o2.order_purchase_timestamp);

-
- This query joins the "payments" table with itself based on the "order_id" column, and filters
the results to include only orders made between January to August in both 2017 and 2018. It then
 -
- calculates the percentage increase in the total payment value for these orders, comparing the
sum of "payment_value" for 2018 with that of 2017, and rounds the result to two decimal places.
The final result is grouped by the year of purchase for both 2017 and 2018.

--
 SELECT
 review_score,
 review_comment_title

 FROM
 target_business.order_reviews
 ORDER BY
 review_score DESC;

--
-
- with an additional import statement for WordCloud from the wordcloud library. The WordCloud cl
ass is used for generating word clouds, which are visual representations of text data where the
size of each word represents its frequency or importance in the text.
 SELECT
 review_comment_title
 FROM
 target_business.order_reviews
 ORDER BY
 review_comment_title DESC;

 WITH review_orders AS (
 SELECT
 r.review_id,
 r.order_id,
 r.review_score,
 r.review_comment_title,
 --r.review_comment_message,
 r.review_creation_date,
 r.review_answer_timestamp,
 o.customer_id,
 o.order_status,
 o.order_purchase_timestamp,
 o.order_delivered_carrier_date,

86 | P a g e

 o.order_delivered_customer_date,
 o.order_estimated_delivery_date
 FROM
 target_business.order_reviews AS r
 JOIN
 target_business.orders AS o
 ON
 r.order_id = o.order_id
)
SELECT
 ro.review_id,
 ro.order_id,
 ro.review_score,
 ro.review_comment_title,
 --ro.review_comment_message,
 ro.review_creation_date,
 ro.review_answer_timestamp,
 ro.customer_id,
 ro.order_status,
 ro.order_purchase_timestamp,
 ro.order_delivered_carrier_date,
 ro.order_delivered_customer_date,
 ro.order_estimated_delivery_date
FROM
 review_orders AS ro;

87 | P a g e

Notebook:

88 | P a g e

89 | P a g e

90 | P a g e

91 | P a g e

92 | P a g e

